Suppr超能文献

身份与位置信息的动态绑定:多身份追踪的序列模型

Dynamic binding of identity and location information: a serial model of multiple identity tracking.

作者信息

Oksama Lauri, Hyönä Jukka

机构信息

Department of Behavioral Sciences, National Defence College, University of Turku, FIN-20014 Turku, Finland.

出版信息

Cogn Psychol. 2008 Jun;56(4):237-83. doi: 10.1016/j.cogpsych.2007.03.001. Epub 2007 Apr 23.

Abstract

Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous attention switching, a capacity-limited episodic buffer for identity-location bindings, indexed location information stored in the visuospatial short-term memory, and an active role of long-term memory. As identity-location bindings are refreshed serially, a location error is inherent for all other targets except the focally attended one. The magnitude of this location error is a key factor in predicting tracking accuracy. MOMIT's predictions were supported by the data of five experiments: performance accuracy decreased as a function of target set-size, speed, and familiarity. A mathematical version of MOMIT fitted nicely to the observed data with plausible parameter estimates for the binding capacity and refresh time.

摘要

多个移动物体的追踪通常被认为是由一种固定容量的并行机制来执行的。本研究提出了一种串行模型(MOMIT)来解释在维持具有不同身份的多个移动物体时的性能准确性。假定了一种串行刷新机制,该机制借助持续的注意力切换、用于身份 - 位置绑定的容量有限的情景缓冲器、存储在视觉空间短期记忆中的索引位置信息以及长期记忆的积极作用。由于身份 - 位置绑定是串行刷新的,除了焦点关注的目标之外,所有其他目标都会存在固有位置误差。这种位置误差的大小是预测追踪准确性的关键因素。MOMIT的预测得到了五个实验数据的支持:性能准确性随着目标集大小、速度和熟悉程度的变化而降低。MOMIT的数学版本通过对绑定容量和刷新时间的合理参数估计很好地拟合了观测数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验