Suppr超能文献

原核和真核基因在大肠杆菌中的功能性表达,用于将葡萄糖转化为对羟基苯乙烯。

Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene.

作者信息

Qi Wei Wei, Vannelli Todd, Breinig Sabine, Ben-Bassat Arie, Gatenby Anthony A, Haynie Sharon L, Sariaslani F Sima

机构信息

Sanofi Pasteur, Process Development R&D, US Office, Discovery Drive, BD55/2203, Swiftwater, PA 18370, USA.

出版信息

Metab Eng. 2007 May;9(3):268-76. doi: 10.1016/j.ymben.2007.01.002. Epub 2007 Feb 22.

Abstract

The chemical monomer p-hydroxystyrene (pHS) is used for producing a number of important industrial polymers from petroleum-based feedstocks. In an alternative approach, the microbial production of pHS can be envisioned by linking together a number of different metabolic pathways, of which those based on using glucose for carbon and energy are currently the most economical. The biological process conserves petroleum when glucose is converted to the aromatic amino acid L-tyrosine, which is deaminated by a tyrosine/phenylalanine ammonia-lyase (PAL/TAL) enzyme to yield p-hydroxycinnamic acid (pHCA). Subsequent decarboxylation of pHCA gives rise to pHS. Bacteria able to efficiently decarboxylate pHCA to pHS using a pHCA decarboxylase (PDC) include Bacillus subtilis, Pseudomonas fluorescens and Lactobacillus plantarum. Both B. subtilis and L. plantarum possess high levels of pHCA-inducible decarboxylase activity and were chosen for further studies. The genes encoding PDC in these organisms were cloned and the pHCA decarboxylase expressed in Escherichia coli strains co-transformed with a plasmid encoding a bifunctional PAL/TAL enzyme from the yeast Rhodotorula glutinis. Production of pHS from glucose was ten-fold greater for the expressed L. plantarum pdc gene (0.11mM), compared to that obtained when the B. subtilis PDC gene (padC) was used. An E. coli strain (WWQ51.1) expressing both tyrosine ammonia-lyase(PAL) and pHCA decarboxylase (pdc), when grown in a 14L fermentor and under phosphate limited conditions, produced 0.4g/L of pHS from glucose. We, therefore, demonstrate pHS production from an inexpensive carbohydrate feedstock by fermentation using a novel metabolic pathway comprising genes from E. coli, L. plantarum and R. glutinis.

摘要

化学单体对羟基苯乙烯(pHS)用于从石油基原料生产多种重要的工业聚合物。在另一种方法中,可以通过连接多种不同的代谢途径来设想微生物生产pHS,其中基于使用葡萄糖作为碳源和能源的途径目前是最经济的。当葡萄糖转化为芳香族氨基酸L-酪氨酸时,该生物过程可节省石油,L-酪氨酸由酪氨酸/苯丙氨酸解氨酶(PAL/TAL)脱氨生成对羟基肉桂酸(pHCA)。随后pHCA的脱羧反应产生pHS。能够使用对羟基肉桂酸脱羧酶(PDC)将pHCA高效脱羧为pHS的细菌包括枯草芽孢杆菌、荧光假单胞菌和植物乳杆菌。枯草芽孢杆菌和植物乳杆菌都具有高水平的pHCA诱导型脱羧酶活性,并被选作进一步研究对象。克隆了这些生物体中编码PDC的基因,并在与编码来自粘红酵母的双功能PAL/TAL酶的质粒共转化的大肠杆菌菌株中表达了对羟基肉桂酸脱羧酶。与使用枯草芽孢杆菌PDC基因(padC)时相比,表达的植物乳杆菌pdc基因从葡萄糖产生的pHS产量高十倍(0.11mM)。当在14L发酵罐中且在磷酸盐限制条件下生长时,表达酪氨酸解氨酶(PAL)和对羟基肉桂酸脱羧酶(pdc)的大肠杆菌菌株(WWQ51.1)从葡萄糖产生了0.4g/L的pHS。因此,我们证明了通过使用包含大肠杆菌、植物乳杆菌和粘红酵母基因的新型代谢途径进行发酵,可从廉价的碳水化合物原料生产pHS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验