Suppr超能文献

在脑组织中表达的两栖动物μ、δ、κ和孤啡肽阿片受体的克隆及生物信息学分析:哺乳动物阿片受体分化的证据

Cloning and bioinformatics of amphibian mu, delta, kappa, and nociceptin opioid receptors expressed in brain tissue: evidence for opioid receptor divergence in mammals.

作者信息

Stevens Craig W, Brasel Christopher M, Mohan Shekher

机构信息

Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA.

出版信息

Neurosci Lett. 2007 Jun 4;419(3):189-94. doi: 10.1016/j.neulet.2007.04.014. Epub 2007 Apr 11.

Abstract

Opioid agonists produce analgesia in humans and other mammals by binding to three distinct types of G protein-coupled receptors; mu (MOR), delta (DOR), and kappa (KOR) opioid receptors. A fourth member of the opioid receptor family is the nociceptin or orphanin FQ receptor (ORL), however the role of the ORL receptor in analgesia is less clear. In the Northern grass frog, Rana pipiens, systemic and central administration of morphine and selective MOR, DOR, and KOR agonists produced dose-dependent antinociceptive effects blocked by the general opioid antagonist, naltrexone. The present study reports on the sequence, expression, and bioinformatics of four opioid receptor cDNAs cloned from Rana pipiens; rpMOR, rpDOR, rpKOR, and rpORL. These were the first opioid receptors cloned from a species of Class Amphibia, are selectively expressed in brain tissue, and show 70-84% identity to their homologous mammalian opioid receptors. Comparisons within species showed that MOR, DOR, and KOR proteins are significantly less divergent in earlier-evolved vertebrates compared to humans and other mammals. Among the four types of opioid receptors, MOR proteins show the least sequence variation among the six vertebrate species. Additionally, phylogenetic analysis supports the hypothesis that the family of opioid receptor proteins are coded by four genes that arose from two gene duplications of a single ancestral opioid receptor gene.

摘要

阿片类激动剂通过与三种不同类型的G蛋白偶联受体结合,在人类和其他哺乳动物中产生镇痛作用;μ(MOR)、δ(DOR)和κ(KOR)阿片受体。阿片受体家族的第四个成员是孤啡肽或孤啡肽FQ受体(ORL),然而ORL受体在镇痛中的作用尚不清楚。在北美草蛙(Rana pipiens)中,全身和中枢给予吗啡以及选择性MOR、DOR和KOR激动剂可产生剂量依赖性的抗伤害感受作用,该作用可被通用阿片拮抗剂纳曲酮阻断。本研究报告了从北美草蛙克隆的四种阿片受体cDNA的序列、表达和生物信息学;rpMOR、rpDOR、rpKOR和rpORL。这些是首次从两栖纲物种中克隆的阿片受体,在脑组织中选择性表达,与它们同源的哺乳动物阿片受体具有70-84%的同一性。种内比较表明,与人类和其他哺乳动物相比,MOR、DOR和KOR蛋白在进化较早的脊椎动物中差异明显较小。在四种阿片受体类型中,MOR蛋白在六个脊椎动物物种中的序列变异最小。此外,系统发育分析支持这样的假设,即阿片受体蛋白家族由四个基因编码,这四个基因源于单个祖先阿片受体基因的两次基因复制。

相似文献

2
The evolution of vertebrate opioid receptors.
Front Biosci (Landmark Ed). 2009 Jan 1;14(4):1247-69. doi: 10.2741/3306.
3
Bioinformatics and evolution of vertebrate nociceptin and opioid receptors.
Vitam Horm. 2015;97:57-94. doi: 10.1016/bs.vh.2014.10.002. Epub 2015 Jan 20.
4
Opioid research in amphibians: an alternative pain model yielding insights on the evolution of opioid receptors.
Brain Res Brain Res Rev. 2004 Oct;46(2):204-15. doi: 10.1016/j.brainresrev.2004.07.003.
9
ORL-1 and mu opioid receptor antisera label different fibers in areas involved in pain processing.
J Comp Neurol. 1998 Sep 28;399(3):373-83. doi: 10.1002/(sici)1096-9861(19980928)399:3<373::aid-cne6>3.0.co;2-y.
10
Nociceptin produces antinociception after spinal administration in amphibians.
Pharmacol Biochem Behav. 2009 Jan;91(3):436-40. doi: 10.1016/j.pbb.2008.08.022. Epub 2008 Sep 5.

引用本文的文献

1
Novel selective κ agonists SLL-039 and SLL-1206 produce potent antinociception with fewer sedation and aversion.
Acta Pharmacol Sin. 2022 Jun;43(6):1372-1382. doi: 10.1038/s41401-021-00761-x. Epub 2021 Sep 7.
2
Alternative Splicing of Opioid Receptor Genes Shows a Conserved Pattern for 6TM Receptor Variants.
Cell Mol Neurobiol. 2021 Jul;41(5):1039-1055. doi: 10.1007/s10571-020-00971-7. Epub 2020 Oct 3.
4
Chemotype-selective modes of action of κ-opioid receptor agonists.
J Biol Chem. 2013 Nov 29;288(48):34470-83. doi: 10.1074/jbc.M113.515668. Epub 2013 Oct 11.
6
Engineering endomorphin drugs: state of the art.
Expert Opin Ther Pat. 2012 Jan;22(1):1-14. doi: 10.1517/13543776.2012.646261. Epub 2012 Jan 4.
7
Current research on opioid receptor function.
Curr Drug Targets. 2012 Feb;13(2):230-46. doi: 10.2174/138945012799201612.
8
Analgesia in amphibians: preclinical studies and clinical applications.
Vet Clin North Am Exot Anim Pract. 2011 Jan;14(1):33-44. doi: 10.1016/j.cvex.2010.09.007.
9
The evolution of vertebrate opioid receptors.
Front Biosci (Landmark Ed). 2009 Jan 1;14(4):1247-69. doi: 10.2741/3306.
10
A pharmacological comparison of the cloned frog and human mu opioid receptors reveals differences in opioid affinity and function.
Eur J Pharmacol. 2008 Dec 3;599(1-3):36-43. doi: 10.1016/j.ejphar.2008.09.043. Epub 2008 Oct 9.

本文引用的文献

3
Accelerated evolution of nervous system genes in the origin of Homo sapiens.
Cell. 2004 Dec 29;119(7):1027-40. doi: 10.1016/j.cell.2004.11.040.
4
Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence.
Neuropharmacology. 2004;47 Suppl 1:300-11. doi: 10.1016/j.neuropharm.2004.07.013.
5
MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.
Brief Bioinform. 2004 Jun;5(2):150-63. doi: 10.1093/bib/5.2.150.
7
Molecular evolution meets the genomics revolution.
Nat Genet. 2003 Mar;33 Suppl:255-65. doi: 10.1038/ng1088.
8
The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors.
Annu Rev Biophys Biomol Struct. 2003;32:375-97. doi: 10.1146/annurev.biophys.32.110601.142520. Epub 2003 Feb 5.
9
Molecular evolution of the mammalian alpha 2B adrenergic receptor.
Mol Biol Evol. 2002 Dec;19(12):2150-60. doi: 10.1093/oxfordjournals.molbev.a004040.
10
Splitting pairs: the diverging fates of duplicated genes.
Nat Rev Genet. 2002 Nov;3(11):827-37. doi: 10.1038/nrg928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验