Serrano Aurelio, Pérez-Castiñeira José R, Baltscheffsky Margareta, Baltscheffsky Herrick
Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain.
IUBMB Life. 2007 Feb;59(2):76-83. doi: 10.1080/15216540701258132.
Suggestions by Calvin about a role of inorganic pyrophosphate (PPi) in early photosynthesis and by Lipmann that PPi may have been the original energy-rich phosphate donor in biological energy conversion, were followed in the mid-1960s by experimental results with isolated chromatophore membranes from the purple photosynthetic bacterium Rhodospirillum rubrum. PPi was shown to be hydrolysed in an uncoupler stimulated reaction by a membrane-bound inorganic pyrophosphatase (PPase), to be formed at the expense of light energy in photophosphorylation and to be utilized as an energy donor for various energy-requiring reactions, as a first known alternative to ATP. This direct link between PPi and photosynthesis led to increasing attention concerning the role of PPi in both early and present biological energy transfer. In the 1970s, the PPase was shown to be a proton pump and to be present also in higher plants. In the 1990s, sequences of H(+)-PPase genes were obtained from plants, protists, bacteria and archaea and two classes of H(+)-PPases differing in K(+) sensitivity were established. Over 200 H(+)-PPase sequences have now been determined. Recent biochemical and biophysical results have led to new progress and questions regarding the H(+)-PPase family, as well as the families of soluble PPases and the inorganic polyphosphatases, which hydrolyse inorganic linear high-molecular-weight polyphosphates (HMW-polyP). Here we will focus attention on the H(+)-PPases, their evolution and putative active site motifs, response to monovalent cations, genetic regulation and some very recent results, based on new methods for obtaining large quantities of purified protein, about their tertiary and quaternary structures.
20世纪60年代中期,卡尔文提出无机焦磷酸(PPi)在早期光合作用中发挥作用,利普曼则认为PPi可能是生物能量转换中最初的富含能量的磷酸盐供体,随后对来自紫色光合细菌红螺菌的分离的载色体膜进行的实验结果支持了这些观点。实验表明,PPi在膜结合的无机焦磷酸酶(PPase)催化的解偶联刺激反应中被水解,在光合磷酸化过程中以光能为代价形成,并被用作各种能量需求反应的能量供体,这是已知的第一种替代ATP的物质。PPi与光合作用之间的这种直接联系使得人们越来越关注PPi在早期和当前生物能量转移中的作用。20世纪70年代,PPase被证明是一种质子泵,并且在高等植物中也存在。20世纪90年代,从植物、原生生物、细菌和古细菌中获得了H(+) - PPase基因的序列,并确定了两类对K(+)敏感性不同的H(+) - PPases。现在已经确定了200多个H(+) - PPase序列。最近的生化和生物物理结果在H(+) - PPase家族以及可溶性PPases和无机多磷酸酶家族方面带来了新的进展和问题,无机多磷酸酶可水解无机线性高分子量多聚磷酸盐(HMW - polyP)。在这里,我们将基于获得大量纯化蛋白质的新方法,重点关注H(+) - PPases、它们的进化和假定的活性位点基序、对单价阳离子的反应、遗传调控以及一些关于它们的三级和四级结构的最新结果。