Gomaa Fatma, Rogers Daniel R, Utter Daniel R, Powers Christopher, Huang I-Ting, Beaudoin David J, Zhang Ying, Cavanaugh Colleen, Edgcomb Virginia P, Bernhard Joan M
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wrae248.
Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.
对厌氧原生生物代谢能力的研究有助于我们理解地球上真核生物生命的进化,并有助于发现类似的外星复杂微生物生命。某些有孔虫类原生生物生活在与真核生物进化时的早期地球条件类似的环境中,包括含硫、缺氧和低氧的沉积物孔隙水。已知有孔虫会形成共生关系,还会容纳来自其他真核生物的细胞器(叶绿体),这可能增强宿主对氧气的独立性。有孔虫生理能力的全部范围尚未完全了解。迄今为止,有孔虫厌氧生活的证据是从首先遭受与原位条件去除相关压力的标本中收集到的。在这里,我们报告了对保存在 euxinic(缺氧和含硫)半深海海底原位的底栖有孔虫种群的全面基因表达分析,从而避免了与样本采集相关的环境变化,包括减压、阳光照射、升温以及氧化。宏转录组学、宏基因组组装基因组以及底物摄取测量被用于研究栖息在加利福尼亚州圣巴巴拉盆地硫氧化细菌垫中的盗食质体有孔虫星状偏顶蛤。我们发现,在黑暗的 euxinia 条件下,星状偏顶蛤的能量产生很不寻常,因为它通过卡尔文循环协调复杂的代谢途径来产生 ATP 和固定碳。这些途径包括延长的糖酵解、厌氧发酵、硫化物氧化,以及存在一种膜结合无机焦磷酸酶,这种酶水解无机焦磷酸以主动将质子泵过线粒体膜。