Suppr超能文献

Investigations on solid-solid phase transformation of 5-methyl-2-[(4-methyl-2-nitrophenyl)amino]-3-thiophenecarbonitrile.

作者信息

Li Hui, Stowell Joseph G, He Xiaorong, Morris Kenneth R, Byrn Stephen R

机构信息

Department of Industrial and Physical Pharmacy, 575 Stadium Mall Drive, Purdue University, West Lafayette, Indiana 47907-2091, USA.

出版信息

J Pharm Sci. 2007 May;96(5):1079-89. doi: 10.1002/jps.20937.

Abstract

Solid-solid transformation of 5-methyl-2-[(4-methyl-2-nitrophenyl)amino]-3-thiophenecarbonitrile from the dark-red to the red form was investigated. By controlled crystallization, the dark-red form was prepared and the crystals were sieved into fractions: coarse (>250 microm), medium (125-177 microm), and fine (<88 microm). The transformation rate order (fastest to slowest) of the different fractions is coarse > medium > fine. However, milling accelerates the transformation, that is, smaller particles generated by milling transforms faster. Furthermore, ethanol vapor annealing slows both the transformation of the coarse and medium fractions, especially the latter. Therefore, the mechanism of transformation is not directly related to the crystal-size and most likely related to the amount and activity of the defects in the crystals. The three-dimensional (3-D) Avrami-Erofe'ev model, know as "random nucleation and growth" model, fits the kinetics of coarse fraction best. Higher relative humidity accelerates the transformation dramatically even though the compound is highly-hydrophobic. With minimal hydrogen bonding interaction involved, it appears even small amounts of water can serve as a nucleation catalyst by binding to the crystal surface, especially at defect sites, thus increasing the molecular mobility of these sites, promoting the transformation to the second phase and thereby increasing the transformation rate.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验