Berkland Cory, Pollauf Emily, Raman Chandrashekar, Silverman Roshelle, Kim Kyekyoon 'Kevin', Pack Daniel W
Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA.
J Pharm Sci. 2007 May;96(5):1176-91. doi: 10.1002/jps.20948.
Novel macromolecular therapeutics such as peptides, proteins, and DNA are advancing rapidly toward the clinic. Because of typically low oral bioavailability, macromolecule delivery requires invasive methods such as frequently repeated injections. Parenteral depots including biodegradable polymer microspheres offer the possibility of reduced dosing frequency but are limited by the inability to adequately control delivery rates. To control release and investigate release mechanisms, we have encapsulated model macromolecules in monodisperse poly(D,L-lactide-co-glycolide) (PLG) microspheres using a double-emulsion method in combination with the precision particle fabrication technique. We encapsulated fluorescein-dextran (F-Dex) and sulforhodamine B-labeled bovine serum albumin (R-BSA) into PLG microspheres of three different sizes: 31, 44, and 80 microm and 34, 47, and 85 microm diameter for F-Dex and R-BSA, respectively. The in vitro release profiles of both compounds showed negligible initial burst. During degradation and release, the microspheres hollowed and swelled at critical time points dependant upon microsphere size. The rate of these events increased with microsphere size resulting in the largest microspheres exhibiting the fastest overall release rate. Monodisperse microspheres may represent a new delivery system for therapeutic proteins and DNA and provide enhanced control of delivery rates using simple injectable depot formulations.
新型大分子疗法,如肽、蛋白质和DNA,正迅速迈向临床应用。由于口服生物利用度通常较低,大分子递送需要采用侵入性方法,如频繁重复注射。包括可生物降解聚合物微球在内的肠胃外贮库给药方式虽有可能降低给药频率,但受限于无法充分控制释放速率。为了控制释放并研究释放机制,我们采用双乳液法结合精密粒子制造技术,将模型大分子包裹于单分散聚(D,L-丙交酯-共-乙交酯)(PLG)微球中。我们将荧光素-葡聚糖(F-Dex)和磺基罗丹明B标记的牛血清白蛋白(R-BSA)分别包裹进三种不同尺寸的PLG微球中:F-Dex的微球直径为31、44和80微米,R-BSA的微球直径为34、47和85微米。两种化合物的体外释放曲线均显示初始突释可忽略不计。在降解和释放过程中,微球在取决于微球尺寸的关键时间点出现中空和肿胀现象。这些现象的发生速率随微球尺寸增大而增加,导致最大尺寸的微球呈现出最快的整体释放速率。单分散微球可能代表了一种用于治疗性蛋白质和DNA的新型递送系统,并可通过简单的可注射贮库制剂实现对释放速率的更好控制。