Suppr超能文献

聚合物微球中自催化降解和侵蚀反应扩散模型的解析解推导

Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.

作者信息

Ford Versypt Ashlee N, Arendt Paul D, Pack Daniel W, Braatz Richard D

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

出版信息

PLoS One. 2015 Aug 18;10(8):e0135506. doi: 10.1371/journal.pone.0135506. eCollection 2015.

Abstract

A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction.

摘要

定义了一个数学反应扩散模型,以描述由聚(D,L-乳酸-乙醇酸共聚物)(PLGA)组成的聚合物微球的逐渐分解,这些微球用于长时间的药物递送。该偏微分方程(PDE)模型处理球形几何中由于化学反应和反应产物扩散导致的同时一级生成,以捕捉自催化对PLGA侵蚀的微球尺寸依赖性效应,这种侵蚀发生在微球暴露于诸如生物流体等水性介质时。针对构成微球的聚合物链的自催化羧酸端基浓度作为径向位置和时间的函数进行了解析求解。自催化化学物质反应和传输的解析解对于预测PLGA微球药物释放从扩散控制转变为侵蚀控制释放的条件、理解PLGA降解和侵蚀机制之间的动态耦合以及设计药物释放颗粒很有用。该模型首次对球形颗粒内PLGA降解和侵蚀的动力学和空间异质性提供了解析预测。该解析解适用于具有同时扩散传输和反应一级生成的其他球形系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e42a/4540565/232440ba34f1/pone.0135506.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验