Einighammer Jens, Oltrup Theo, Bende Thomas, Jean Benedikt
University Eye Hospital, Tuebingen, Germany.
J Refract Surg. 2007 Apr;23(4):393-404. doi: 10.3928/1081-597X-20070401-12.
An implementation of real ray tracing based on Snell's law is tested by predicting the refraction of pseudophakic eyes and calculating the geometry of intraocular lenses (IOLs).
The refraction of 30 pseudophakic eyes was predicted with the measured corneal topography, axial length, and the known IOL geometry and compared to the manifest refraction. Intraocular lens calculation was performed for 30 normal eyes and 12 eyes that had previous refractive surgery for myopia correction and compared to state-of-the-art IOL calculation formulae.
Mean difference between predicted and manifest refraction for a 2.5-mm pupil were sphere 0.11 +/- 0.43 diopters (D), cylinder -0.18 +/- 0.52 D, and axis 5.13 degrees +/- 30.19 degrees. Pearson's correlation coefficient was sphere r = 0.92, P < .01; cylinder r = 0.79, P < .01; and axis r = 0.91, P < .01. Intraocular lens calculation for the normal group showed that the mean absolute error regarding refractive outcome is largest for SRK II (0.49 D); all other formulae including ray tracing result in similar values ranging from 0.36 to 0.40 D. Intraocular lens calculation for the refractive group showed that depending on pupil size (3.5 to 2.5 mm), ray tracing delivers values 0.95 to 1.90 D higher compared to the average of Holladay 1, SRK/T, Haigis, and Hoffer Q formulae.
It has been shown that ray tracing can compete with state-of-the-art IOL calculation formulae for normal eyes. For eyes with previous refractive surgery, IOL powers obtained by ray tracing are significantly higher than those from the other formulae. Thus, a hyperopic shift may be avoided using ray tracing even without clinical history.
通过预测人工晶状体眼的折射并计算人工晶状体(IOL)的几何形状,对基于斯涅尔定律的实时光线追踪实现方法进行测试。
利用测量得到的角膜地形图、眼轴长度以及已知的IOL几何形状,对30只人工晶状体眼的折射进行预测,并与显验光进行比较。对30只正常眼和12只曾接受近视矫正屈光手术的眼睛进行IOL计算,并与当前最先进的IOL计算公式进行比较。
对于2.5毫米瞳孔,预测屈光度与显验光之间的平均差异为:球镜0.11±0.43屈光度(D),柱镜-0.18±0.52 D,轴位5.13度±30.19度。皮尔逊相关系数为:球镜r = 0.92,P <.01;柱镜r = 0.79,P <.01;轴位r = 0.91,P <.01。正常组的IOL计算显示,SRK II公式在屈光结果方面的平均绝对误差最大(0.49 D);包括光线追踪在内的所有其他公式得出的相似值范围为0.36至0.40 D。屈光组的IOL计算显示,根据瞳孔大小(3.5至2.5毫米),与霍拉迪1、SRK/T、海吉斯和霍弗Q公式的平均值相比,光线追踪得出的值要高0.95至1.90 D。
研究表明,对于正常眼,光线追踪可与当前最先进的IOL计算公式相媲美。对于曾接受屈光手术的眼睛,通过光线追踪获得的IOL屈光度明显高于其他公式得出的结果。因此,即使没有临床病史,使用光线追踪也可能避免远视偏移。