Suppr超能文献

环间通讯使伴侣蛋白GroEL复合体能够区分不同的底物。

Inter-ring communication allows the GroEL chaperonin complex to distinguish between different substrates.

作者信息

van Duijn Esther, Heck Albert J R, van der Vies Saskia M

机构信息

Department of Biochemistry and Molecular Biology, Faculty of Sciences, Free University, Amsterdam, The Netherlands.

出版信息

Protein Sci. 2007 May;16(5):956-65. doi: 10.1110/ps.062713607.

Abstract

The productive folding of substrate proteins by the GroEL complex of Escherichia coli requires the activity of both the chaperonin rings. These heptameric rings were shown to regulate the chaperonins' affinity for substrates and co-chaperonin via inter-ring communications; however, the molecular details of the interactions are not well understood. We have investigated the effect of substrate binding on inter-ring communications of the chaperonin complex, both the double-ring GroEL as well as the single-ring SR1 chaperonin in complex with four different substrates by using mass spectrometry. This approach shows that whereas SR1 is unable to distinguish between Rubisco, gp23, gp5, and MDH, GroEL shows clear differences upon binding these substrates. The most distinctive binding behavior is observed for Rubisco, which only occupies one GroEL ring. Both bacteriophage capsid proteins (gp23 and gp5) as well as MDH are able to bind to the two GroEL rings simultaneously. Our data suggest that inter-ring communication allows the chaperonin complex to differentiate between substrates. Using collision induced dissociation in the gas phase, differences between the chaperonin(substrate) complexes are observed only when both rings are present. The data indicate that the size of the substrate is an important factor that determines the degree of stabilization of the chaperonin complex.

摘要

大肠杆菌的GroEL复合物对底物蛋白进行有效的折叠需要两个伴侣蛋白环的活性。这些七聚体环通过环间通讯来调节伴侣蛋白对底物和共伴侣蛋白的亲和力;然而,相互作用的分子细节尚未得到很好的理解。我们通过质谱研究了底物结合对伴侣蛋白复合物环间通讯的影响,该复合物包括双环GroEL以及与四种不同底物结合的单环SR1伴侣蛋白。这种方法表明,虽然SR1无法区分核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)、gp23、gp5和苹果酸脱氢酶(MDH),但GroEL在结合这些底物时表现出明显差异。观察到Rubisco的结合行为最为独特,它只占据一个GroEL环。噬菌体衣壳蛋白(gp23和gp5)以及MDH都能够同时结合到两个GroEL环上。我们的数据表明,环间通讯使伴侣蛋白复合物能够区分不同的底物。在气相中使用碰撞诱导解离,只有当两个环都存在时,才能观察到伴侣蛋白(底物)复合物之间的差异。数据表明,底物的大小是决定伴侣蛋白复合物稳定程度的一个重要因素。

相似文献

4
Substrate mutations that bypass a specific Cpn10 chaperonin requirement for protein folding.
J Biol Chem. 1998 Dec 18;273(51):34075-86. doi: 10.1074/jbc.273.51.34075.
5
Chaperonin complex with a newly folded protein encapsulated in the folding chamber.
Nature. 2009 Jan 1;457(7225):107-10. doi: 10.1038/nature07479.
6
The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8144-9. doi: 10.1073/pnas.0500048102. Epub 2005 May 26.
7
Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
J Mol Biol. 2015 Sep 11;427(18):2912-8. doi: 10.1016/j.jmb.2015.04.007. Epub 2015 Apr 18.
9
Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):15-20. doi: 10.1016/j.bbrc.2015.08.034. Epub 2015 Aug 11.
10
Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
J Mol Biol. 2015 Jun 19;427(12):2244-55. doi: 10.1016/j.jmb.2015.04.009. Epub 2015 Apr 23.

引用本文的文献

1
Structural basis of substrate progression through the bacterial chaperonin cycle.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2308933120. doi: 10.1073/pnas.2308933120. Epub 2023 Dec 8.
2
Cryo-EM structures of GroEL:ES with RuBisCO visualize molecular contacts of encapsulated substrates in a double-cage chaperonin.
iScience. 2021 Dec 27;25(1):103704. doi: 10.1016/j.isci.2021.103704. eCollection 2022 Jan 21.
3
GroEL Mediates Folding of Serine/Threonine Protein Kinase, PrkC.
Indian J Microbiol. 2018 Dec;58(4):520-524. doi: 10.1007/s12088-018-0744-y. Epub 2018 May 30.
4
A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin.
Int J Biol Macromol. 2018 Oct 15;118(Pt A):671-675. doi: 10.1016/j.ijbiomac.2018.06.120. Epub 2018 Jun 27.
5
Distinct Stabilities of the Structurally Homologous Heptameric Co-Chaperonins GroES and gp31.
J Am Soc Mass Spectrom. 2019 Jan;30(1):7-15. doi: 10.1007/s13361-018-1910-5. Epub 2018 May 7.
6
ATP-driven molecular chaperone machines.
Biopolymers. 2013 Nov;99(11):846-59. doi: 10.1002/bip.22361.
7
Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry.
Rapid Commun Mass Spectrom. 2010 Oct 30;24(20):3033-3042. doi: 10.1002/rcm.4732.
8
Analyzing large protein complexes by structural mass spectrometry.
J Vis Exp. 2010 Jun 19(40):1954. doi: 10.3791/1954.
9
How far can we go with structural mass spectrometry of protein complexes?
J Am Soc Mass Spectrom. 2010 Apr;21(4):487-500. doi: 10.1016/j.jasms.2009.12.017. Epub 2010 Jan 4.
10
Increased light intensity induces heat shock protein Hsp60 in coral species.
Cell Stress Chaperones. 2009 Sep;14(5):469-76. doi: 10.1007/s12192-009-0100-6. Epub 2009 Feb 12.

本文引用的文献

3
Evidence for macromolecular protein rings in the absence of bulk water.
Science. 2005 Dec 9;310(5754):1658-61. doi: 10.1126/science.1120177. Epub 2005 Nov 17.
6
The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy.
J Mol Biol. 2005 Apr 22;348(1):219-30. doi: 10.1016/j.jmb.2005.02.027.
7
A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation.
Nat Struct Mol Biol. 2004 Nov;11(11):1128-33. doi: 10.1038/nsmb844. Epub 2004 Oct 10.
8
Native protein mass spectrometry: from intact oligomers to functional machineries.
Curr Opin Chem Biol. 2004 Oct;8(5):519-26. doi: 10.1016/j.cbpa.2004.08.006.
9
Investigation of intact protein complexes by mass spectrometry.
Mass Spectrom Rev. 2004 Sep-Oct;23(5):368-89. doi: 10.1002/mas.10081.
10
Identification of a major inter-ring coupling step in the GroEL reaction cycle.
J Biol Chem. 2004 Sep 10;279(37):38111-7. doi: 10.1074/jbc.M401730200. Epub 2004 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验