Suppr超能文献

使用空间滤波和局部响应归一化来解释亮度错觉。

Explaining brightness illusions using spatial filtering and local response normalization.

作者信息

Robinson Alan E, Hammon Paul S, de Sa Virginia R

机构信息

Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0515, USA.

出版信息

Vision Res. 2007 Jun;47(12):1631-44. doi: 10.1016/j.visres.2007.02.017. Epub 2007 Apr 24.

Abstract

We introduce two new low-level computational models of brightness perception that account for a wide range of brightness illusions, including many variations on White's Effect [Perception, 8, 1979, 413]. Our models extend Blakeslee and McCourt's ODOG model [Vision Research, 39, 1999, 4361], which combines multiscale oriented difference-of-Gaussian filters and response normalization. We extend the response normalization to be more neurally plausible by constraining normalization to nearby receptive fields (models 1 and 2) and spatial frequencies (model 2), and show that both of these changes increase the effectiveness of the models at predicting brightness illusions.

摘要

我们引入了两种新的亮度感知低层次计算模型,它们能够解释广泛的亮度错觉现象,包括怀特效应[《感知》,第8卷,1979年,第413页]的许多变体。我们的模型扩展了布莱克斯利和麦考特的ODOG模型[《视觉研究》,第39卷,1999年,第4361页],该模型结合了多尺度方向高斯差分滤波器和响应归一化。通过将归一化限制在附近的感受野(模型1和模型2)和空间频率(模型2),我们使响应归一化在神经学上更具合理性,并表明这两种变化都提高了模型预测亮度错觉的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验