van Zon Jeroen S, Lubensky David K, Altena Pim R H, ten Wolde Pieter Rein
Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7420-5. doi: 10.1073/pnas.0608665104. Epub 2007 Apr 25.
In a recent series of ground-breaking experiments, Nakajima et al. [Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Science 308:414-415] showed that the three cyanobacterial clock proteins KaiA, KaiB, and KaiC are sufficient in vitro to generate circadian phosphorylation of KaiC. Here, we present a mathematical model of the Kai system. At its heart is the assumption that KaiC can exist in two conformational states, one favoring phosphorylation and the other dephosphorylation. Each individual KaiC hexamer then has a propensity to be phosphorylated in a cyclic manner. To generate macroscopic oscillations, however, the phosphorylation cycles of the different hexamers must be synchronized. We propose a novel synchronization mechanism based on differential affinity: KaiA stimulates KaiC phosphorylation, but the limited supply of KaiA dimers binds preferentially to those KaiC hexamers that are falling behind in the oscillation. KaiB sequesters KaiA and stabilizes the dephosphorylating KaiC state. We show that our model can reproduce a wide range of published data, including the observed insensitivity of the oscillation period to variations in temperature, and that it makes nontrivial predictions about the effects of varying the concentrations of the Kai proteins.
在最近一系列开创性实验中,中岛等人[中岛M、今井K、伊藤H、西胁T、村山Y、岩崎H、小山T、近藤T(2005年)《科学》308:414 - 415]表明,三种蓝藻生物钟蛋白KaiA、KaiB和KaiC在体外足以产生KaiC的昼夜节律磷酸化。在此,我们提出了Kai系统的数学模型。其核心假设是KaiC可以存在两种构象状态,一种有利于磷酸化,另一种有利于去磷酸化。然后每个单独的KaiC六聚体都有以循环方式被磷酸化的倾向。然而,为了产生宏观振荡,不同六聚体的磷酸化循环必须同步。我们提出了一种基于差异亲和力的新型同步机制:KaiA刺激KaiC磷酸化,但KaiA二聚体的有限供应优先结合到那些在振荡中落后的KaiC六聚体上。KaiB隔离KaiA并稳定去磷酸化的KaiC状态。我们表明,我们的模型可以重现广泛的已发表数据,包括观察到的振荡周期对温度变化不敏感的情况,并且它对改变Kai蛋白浓度的影响做出了重要预测。