Akiyama Shuji, Nohara Atsushi, Ito Kazuki, Maéda Yuichiro
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
Mol Cell. 2008 Mar 28;29(6):703-16. doi: 10.1016/j.molcel.2008.01.015. Epub 2008 Mar 13.
In vitro incubation of three Kai proteins, KaiA, KaiB, and KaiC, with ATP induces a KaiC phosphorylation cycle that is a potential circadian clock pacemaker in cyanobacterium Synechococcus elongatus PCC 7942. The Kai proteins assemble into large heteromultimeric complexes (periodosome) to effect a robust oscillation of KaiC phosphorylation. Here, we report real-time measurements of the assembly/disassembly dynamics of the Kai periodosome by using small-angle X-ray scattering and determination of the low-resolution shapes of the KaiA:KaiC and KaiB:KaiC complexes. Most previously identified period-affecting mutations could be mapped to the association interfaces of our complex models. Our results suggest that the assembly/disassembly processes are crucial for phase entrainment in the early synchronizing stage but are passively driven by the phosphorylation status of KaiC in the late oscillatory stage. The Kai periodosome is assembled in such a way that KaiA and KaiB are recruited to a C-terminal region of KaiC in a phosphorylation-dependent manner.
在体外将三种生物钟蛋白KaiA、KaiB和KaiC与ATP一起孵育,会诱导KaiC磷酸化循环,这是细长聚球藻PCC 7942中潜在的昼夜节律时钟起搏器。这些Kai蛋白组装成大型异源多聚体复合物(生物钟体),以实现KaiC磷酸化的强劲振荡。在此,我们报告了通过小角X射线散射对Kai生物钟体组装/拆卸动力学的实时测量,以及对KaiA:KaiC和KaiB:KaiC复合物低分辨率形状的测定。大多数先前鉴定出的影响周期的突变都可映射到我们复合物模型的结合界面。我们的结果表明,组装/拆卸过程在早期同步阶段对相位调整至关重要,但在后期振荡阶段由KaiC的磷酸化状态被动驱动。Kai生物钟体以这样一种方式组装,即KaiA和KaiB以磷酸化依赖的方式被招募到KaiC的C端区域。