Suppr超能文献

利用选择性靶向酵母细胞周期突变体的小分子揭示遗传关系。

Uncovering genetic relationships using small molecules that selectively target yeast cell cycle mutants.

作者信息

Nehil Michael T, Tamble Craig M, Combs David J, Kellogg Douglas R, Lokey R Scott

机构信息

University of California, San Francisco, CA, USA.

出版信息

Chem Biol Drug Des. 2007 Apr;69(4):258-64. doi: 10.1111/j.1747-0285.2007.00496.x.

Abstract

Genetic analysis in budding yeast has shown that multiple G1 cyclins and cyclin-dependent kinases control cell cycle entry, polarized growth, and spindle pole duplication. The G1 cyclins Cln1 and Cln2 associate with the cyclin-dependent kinase Cdc28 to facilitate cell cycle progression and development of the cleavage apparatus. We have developed a chemical genetic approach toward the discovery of compounds that target G1 control pathways by screening for compounds that selectively kill a yeast strain lacking the G1 cyclins Cln1 and Cln2. A class of small molecules was identified that is highly toxic toward the cln1 Delta cln2 Delta double mutant and has relatively little effect on wild-type yeast. We call these compounds 'clinostatins' for their selectivity toward the cln1/2 deletion strain. Clinostatins were used in a genome-wide chemical synthetic lethality screen to identify other genes required for growth in the presence of the drug. Other deletions that were sensitive to the drug include members of the protein kinase C(PKC)-dependent MAP kinase pathway. These results suggest an approach for combining chemical synthetic lethality and chemical genomic screens to uncover novel genetic interactions that can be applied to other eukaryotic pathways of interest.

摘要

对芽殖酵母的遗传分析表明,多种G1细胞周期蛋白和细胞周期蛋白依赖性激酶控制细胞周期进入、极性生长和纺锤体极复制。G1细胞周期蛋白Cln1和Cln2与细胞周期蛋白依赖性激酶Cdc28结合,以促进细胞周期进程和分裂装置的发育。我们开发了一种化学遗传学方法,通过筛选能选择性杀死缺乏G1细胞周期蛋白Cln1和Cln2的酵母菌株的化合物,来发现靶向G1控制途径的化合物。鉴定出了一类对cln1Δcln2Δ双突变体具有高毒性且对野生型酵母影响相对较小的小分子。由于它们对cln1/2缺失菌株的选择性,我们将这些化合物称为“细胞周期蛋白抑制剂”。细胞周期蛋白抑制剂用于全基因组化学合成致死筛选,以鉴定在药物存在下生长所需的其他基因。对该药物敏感的其他缺失包括蛋白激酶C(PKC)依赖性丝裂原活化蛋白激酶途径的成员。这些结果提示了一种将化学合成致死性和化学基因组筛选相结合的方法,以揭示可应用于其他感兴趣的真核生物途径的新型遗传相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验