Yano Miyuki, Matsumura Takeshi, Senokuchi Takafumi, Ishii Norio, Murata Yusuke, Taketa Kayo, Motoshima Hiroyuki, Taguchi Tetsuya, Sonoda Kazuhiro, Kukidome Daisuke, Takuwa Yoh, Kawada Teruo, Brownlee Michael, Nishikawa Takeshi, Araki Eiichi
Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
Circ Res. 2007 May 25;100(10):1442-51. doi: 10.1161/01.RES.0000268411.49545.9c. Epub 2007 Apr 26.
Both statins and peroxisome proliferator-activated receptor (PPAR)gamma ligands have been reported to protect against the progression of atherosclerosis. In the present study, we investigated the effects of statins on PPARgamma activation in macrophages. Statins increased PPARgamma activity, which was inhibited by mevalonate, farnesylpyrophosphate, or geranylgeranylpyrophosphate. Furthermore, a farnesyl transferase inhibitor and a geranylgeranyl transferase inhibitor mimicked the effects of statins. Statins inhibited the membrane translocations of Ras, RhoA, Rac, and Cdc42, and overexpression of dominant-negative mutants of RhoA (DN-RhoA) and Cdc42 (DN-Cdc42), but not of Ras or Rac, increased PPARgamma activity. Statins induced extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. However, DN-RhoA and DN-Cdc42 activated p38 MAPK, but not ERK1/2. ERK1/2- or p38 MAPK-specific inhibitors abrogated statin-induced PPARgamma activation. Statins induced cyclooxygenase (COX)-2 expression and increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) levels through ERK1/2- and p38 MAPK-dependent pathways, and inhibitors or small interfering RNA of COX-2 inhibited statin-induced PPARgamma activation. Statins also activate PPARalpha via COX-2-dependent increases in 15d-PGJ(2) levels. We further demonstrated that statins inhibited lipopolysaccharide-induced tumor necrosis factor alpha or monocyte chemoattractant protein-1 mRNA expression, and these effects by statins were abrogated by the PPARgamma antagonist T0070907 or by small interfering RNA of PPARgamma or PPARalpha. Statins also induced ATP-binding cassette protein A1 or CD36 mRNA expression, and these effects were suppressed by small interfering RNAs of PPARgamma or PPARalpha. In conclusion, statins induce COX-2-dependent increase in 15d-PGJ(2) level through a RhoA- and Cdc42-dependent p38 MAPK pathway and a RhoA- and Cdc42-independent ERK1/2 pathway, thereby activating PPARgamma. Statins also activate PPARalpha via COX-2-dependent pathway. These effects of statins may explain their antiatherogenic actions.
他汀类药物和过氧化物酶体增殖物激活受体(PPAR)γ配体均已被报道可预防动脉粥样硬化的进展。在本研究中,我们调查了他汀类药物对巨噬细胞中PPARγ激活的影响。他汀类药物增加了PPARγ活性,而甲羟戊酸、法尼基焦磷酸或香叶基香叶基焦磷酸可抑制这种活性。此外,一种法尼基转移酶抑制剂和一种香叶基香叶基转移酶抑制剂模拟了他汀类药物的作用。他汀类药物抑制了Ras、RhoA、Rac和Cdc42的膜转位,并且RhoA(DN-RhoA)和Cdc42(DN-Cdc42)的显性负突变体的过表达增加了PPARγ活性,但Ras或Rac的显性负突变体则没有这种作用。他汀类药物诱导细胞外信号调节激酶(ERK)1/2和p38丝裂原活化蛋白激酶(MAPK)激活。然而,DN-RhoA和DN-Cdc42激活了p38 MAPK,但未激活ERK1/2。ERK1/2或p38 MAPK特异性抑制剂消除了他汀类药物诱导的PPARγ激活。他汀类药物通过ERK1/2和p38 MAPK依赖性途径诱导环氧化酶(COX)-2表达并增加细胞内15-脱氧-Δ12,14-前列腺素J2(15d-PGJ2)水平,COX-2的抑制剂或小干扰RNA抑制了他汀类药物诱导的PPARγ激活。他汀类药物还通过COX-2依赖性增加15d-PGJ2水平来激活PPARα。我们进一步证明,他汀类药物抑制脂多糖诱导的肿瘤坏死因子α或单核细胞趋化蛋白-1 mRNA表达,而PPARγ拮抗剂T0070907或PPARγ或PPARα的小干扰RNA消除了他汀类药物的这些作用。他汀类药物还诱导ATP结合盒蛋白A1或CD36 mRNA表达,而PPARγ或PPARα的小干扰RNA抑制了这些作用。总之,他汀类药物通过RhoA和Cdc42依赖性p38 MAPK途径以及RhoA和Cdc42非依赖性ERK1/2途径诱导COX-2依赖性增加15d-PGJ2水平,从而激活PPARγ。他汀类药物还通过COX-2依赖性途径激活PPARα。他汀类药物的这些作用可能解释了它们的抗动脉粥样硬化作用。