Suppr超能文献

气道高反应性、重塑与平滑肌质量:答案正确,原因错误?

Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason?

作者信息

Oliver Madavi N, Fabry Ben, Marinkovic Aleksandar, Mijailovich Srboljub M, Butler James P, Fredberg Jeffrey J

机构信息

Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.

出版信息

Am J Respir Cell Mol Biol. 2007 Sep;37(3):264-72. doi: 10.1165/rcmb.2006-0418OC. Epub 2007 Apr 26.

Abstract

We quantified the effects of airway wall remodeling upon airway smooth muscle (ASM) shortening. Isolated ASM from sheep was attached to a servo-controller that applied a physiologic load. This load could be altered to reflect specified changes of airway wall geometry, elasticity, parenchymal tethering, transpulmonary pressure (P(L)), and fluctuations in P(L) associated with breathing. Starting at a reference length (L(ref)), ASM was stimulated with acetlycholine and held at constant P(L) of 4 cm H(2)O for 2 h. When all compartments were thickened to simulate the asthmatic airway but P(L) was held fixed, ASM shortened much more than that in the normal airway (to 0.52 L(ref) versus 0.66 L(ref)). When breathing with deep inspirations (DIs) was initiated, within the first three DIs the ASM in the normal airway lengthened to 0.84 L(ref), whereas that in the asthmatic airway remained stuck at 0.53 L(ref). Thickening of the smooth muscle layer alone produced the greatest muscle shortening (to 0.47 L(ref)) when compared with thickening of only submucosal (to 0.67 L(ref)) or only adventitial (to 0.62 L(ref)) compartments. With increased ASM mass, the ASM failed to lengthen in response to DIs, whereas in the airway with thickened submucosal and adventitial layers ASM lengthened dramatically (to 0.83 L(ref)). These findings confirm the long-held conclusion that increased muscle mass is the functionally dominant derangement, but mechanisms accounting for this conclusion differ dramatically from those previously presumed. Furthermore, increased ASM mass explained both hyperresponsiveness and the failure of a DI to relax the asthmatic airway.

摘要

我们对气道壁重塑对气道平滑肌(ASM)缩短的影响进行了量化。从绵羊身上分离出的ASM附着在一个施加生理负荷的伺服控制器上。该负荷可以改变,以反映气道壁几何形状、弹性、实质组织束缚、跨肺压(P(L))以及与呼吸相关的P(L)波动的特定变化。从参考长度(L(ref))开始,用乙酰胆碱刺激ASM,并在4 cm H(2)O的恒定P(L)下保持2小时。当所有腔室都增厚以模拟哮喘气道,但P(L)保持固定时,ASM缩短的程度比正常气道大得多(分别为0.52 L(ref)和0.66 L(ref))。当开始进行深呼吸(DI)呼吸时,在最初的三次DI内,正常气道中的ASM延长至0.84 L(ref),而哮喘气道中的ASM仍停留在0.53 L(ref)。与仅黏膜下层(至0.67 L(ref))或仅外膜层(至0.62 L(ref))增厚相比,仅平滑肌层增厚导致的肌肉缩短最大(至0.47 L(ref))。随着ASM质量增加,ASM无法对DI做出延长反应,而在黏膜下层和外膜层增厚的气道中,ASM显著延长(至0.83 L(ref))。这些发现证实了长期以来的结论,即肌肉质量增加是功能上占主导地位的紊乱,但解释这一结论的机制与先前推测的有很大不同。此外,ASM质量增加解释了高反应性以及DI无法使哮喘气道舒张的原因。

相似文献

1
Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason?
Am J Respir Cell Mol Biol. 2007 Sep;37(3):264-72. doi: 10.1165/rcmb.2006-0418OC. Epub 2007 Apr 26.
2
Shortening of airway smooth muscle is modulated by prolonging the time without simulated deep inspirations in ovine tracheal strips.
J Appl Physiol (1985). 2019 Dec 1;127(6):1528-1538. doi: 10.1152/japplphysiol.00423.2019. Epub 2019 Sep 23.
3
Interval between simulated deep inspirations on the dynamics of airway smooth muscle contraction in guinea pig bronchi.
Respir Physiol Neurobiol. 2019 Jan;259:136-142. doi: 10.1016/j.resp.2018.09.003. Epub 2018 Sep 11.
4
Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness.
J Appl Physiol (1985). 1999 Jun;86(6):2001-12. doi: 10.1152/jappl.1999.86.6.2001.
5
Bronchoprotective effect of simulated deep inspirations in tracheal smooth muscle.
J Appl Physiol (1985). 2014 Dec 15;117(12):1502-13. doi: 10.1152/japplphysiol.00713.2014. Epub 2014 Oct 16.
6
Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?
J Appl Physiol (1985). 2013 Nov 1;115(9):1304-15. doi: 10.1152/japplphysiol.01480.2012. Epub 2013 Aug 22.
7
The contractile lability of smooth muscle in asthmatic airway hyperresponsiveness.
Expert Rev Respir Med. 2016;10(1):19-27. doi: 10.1586/17476348.2016.1111764. Epub 2015 Nov 11.
8
The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.
Eur Respir J. 2000 Aug;16(2):349-54. doi: 10.1034/j.1399-3003.2000.16b25.x.
9
Functional significance of increased airway smooth muscle in asthma and COPD.
J Appl Physiol (1985). 1993 Jun;74(6):2771-81. doi: 10.1152/jappl.1993.74.6.2771.
10
Human trachealis and main bronchi smooth muscle are normoresponsive in asthma.
Am J Respir Crit Care Med. 2015 Apr 15;191(8):884-93. doi: 10.1164/rccm.201407-1296OC.

引用本文的文献

1
Targeting cytoskeletal biomechanics to modulate airway smooth muscle contraction in asthma.
J Biol Chem. 2025 Jan;301(1):108028. doi: 10.1016/j.jbc.2024.108028. Epub 2024 Nov 28.
3
A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming.
Biophys Rev (Melville). 2023 Dec;4(4):041304. doi: 10.1063/5.0179719. Epub 2023 Dec 21.
4
Airway smooth muscle function in asthma.
Front Physiol. 2022 Oct 5;13:993406. doi: 10.3389/fphys.2022.993406. eCollection 2022.
5
Role of NEAT1/MiR-9-5p/SLC26A2 Pathway on Human Airway Smooth Muscle Cell.
Yonsei Med J. 2021 Sep;62(9):858-867. doi: 10.3349/ymj.2021.62.9.858.
6
Structure and function of small airways in asthma patients revisited.
Eur Respir Rev. 2021 Jan 19;30(159). doi: 10.1183/16000617.0186-2020. Print 2021 Mar 31.
7
The Aftermath of Bronchoconstriction.
J Eng Sci Med Diagn Ther. 2019 Feb;2(1):0108031-108036. doi: 10.1115/1.4042318. Epub 2019 Jan 22.
8
The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity.
J Eng Sci Med Diagn Ther. 2019 Feb;2(1):0108021-1080221. doi: 10.1115/1.4042309. Epub 2019 Jan 18.
9
Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia.
Front Pharmacol. 2019 Oct 9;10:1148. doi: 10.3389/fphar.2019.01148. eCollection 2019.
10
Equine asthma: Integrative biologic relevance of a recently proposed nomenclature.
J Vet Intern Med. 2018 Nov;32(6):2088-2098. doi: 10.1111/jvim.15302. Epub 2018 Oct 7.

本文引用的文献

1
Strange dynamics of a dynamic cytoskeleton.
Proc Am Thorac Soc. 2008 Jan 1;5(1):58-61. doi: 10.1513/pats.200705-055VS.
2
Universal physical responses to stretch in the living cell.
Nature. 2007 May 31;447(7144):592-5. doi: 10.1038/nature05824.
3
Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness?
Am J Respir Cell Mol Biol. 2006 Jul;35(1):55-64. doi: 10.1165/rcmb.2005-0453OC. Epub 2006 Feb 16.
4
Cytoskeletal remodelling and slow dynamics in the living cell.
Nat Mater. 2005 Jul;4(7):557-61. doi: 10.1038/nmat1404. Epub 2005 Jun 5.
5
Structural changes in the airways in asthma: observations and consequences.
Clin Sci (Lond). 2005 Jun;108(6):463-77. doi: 10.1042/CS20040342.
6
Latrunculin B increases force fluctuation-induced relengthening of ACh-contracted, isotonically shortened canine tracheal smooth muscle.
J Appl Physiol (1985). 2005 Feb;98(2):489-97. doi: 10.1152/japplphysiol.01378.2003. Epub 2004 Oct 1.
7
Bronchospasm and its biophysical basis in airway smooth muscle.
Respir Res. 2004 Feb 26;5(1):2. doi: 10.1186/1465-9921-5-2.
8
PATTERN OF VENTILATION IN YOUNG ADULTS.
J Appl Physiol. 1964 Mar;19:195-8. doi: 10.1152/jappl.1964.19.2.195.
9
Complexity of factors modulating airway narrowing in vivo: relevance to assessment of airway hyperresponsiveness.
J Appl Physiol (1985). 2003 Sep;95(3):1305-13. doi: 10.1152/japplphysiol.00001.2003.
10
Airway wall remodeling: friend or foe?
J Appl Physiol (1985). 2003 Jul;95(1):426-34. doi: 10.1152/japplphysiol.00159.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验