Suppr超能文献

应用于职业暴露的对数正态模型的拟合优度度量。

A measure of goodness-of-fit for the lognormal model applied to occupational exposures.

作者信息

Waters M A, Selvin S, Rappaport S M

机构信息

Department of Biomedical and Environmental Health Sciences, University of California, Berkeley 94720.

出版信息

Am Ind Hyg Assoc J. 1991 Nov;52(11):493-502. doi: 10.1080/15298669191365108.

Abstract

The lognormal distribution is often applied to occupational exposures, yet the assumption of lognormality is rarely verified. This lack of rigor in evaluating the appropriateness of the lognormal model has resulted, in part, from the difficulty of applying formal goodness-of-fit tests. When evaluation of model fit has been attempted, occupational hygienists have relied upon probability plotting of exposures rather than upon formal statistical methods. The goal of this work was to develop for the occupational hygienist a simple quantitative evaluation to supplement the probability plot. A measure of goodness-of-fit to the lognormal model based on the ratio of two estimators of the mean of the distribution, the simple or direct estimate of the mean and the maximum likelihood estimate of the mean of a lognormal distribution, is described. This new measure, the ratio metric, is a simple extension of calculations made routinely by many occupational hygienists. Results from using the ratio metric were compared to probability plotting and to two traditional measures of goodness-of-fit, the Lilliefors test and the W test, for two occupational exposure data sets. The results of the ratio and W tests are comparable for a variety of occupational exposure data, but the Lilliefors test is overly conservative and does not detect several cases of gross deviations from lognormality. The ratio metric is an effective alternative to the Lilliefors test and is easier to perform than the W test for the range of data usually encountered by occupational hygienists. Occupational hygienists are encouraged to use the ratio metric in conjunction with the probability plot in evaluating the lognormal assumption.

摘要

对数正态分布常用于职业暴露研究,但对数正态性假设却很少得到验证。在评估对数正态模型的适用性时缺乏严谨性,部分原因在于应用正式的拟合优度检验存在困难。当尝试评估模型拟合度时,职业卫生学家依赖于暴露数据的概率绘图,而非正式的统计方法。这项工作的目标是为职业卫生学家开发一种简单的定量评估方法,以补充概率绘图法。本文描述了一种基于分布均值的两个估计量之比的对数正态模型拟合优度度量方法,这两个估计量分别是均值的简单或直接估计值以及对数正态分布均值的最大似然估计值。这种新的度量方法,即比率度量,是许多职业卫生学家常规计算的简单扩展。将比率度量的结果与概率绘图法以及两种传统的拟合优度度量方法(Lilliefors检验和W检验)针对两个职业暴露数据集进行了比较。对于各种职业暴露数据,比率检验和W检验的结果具有可比性,但Lilliefors检验过于保守,无法检测出几例明显偏离对数正态性的情况。对于职业卫生学家通常遇到的数据范围,比率度量是Lilliefors检验的有效替代方法,并且比W检验更易于执行。鼓励职业卫生学家在评估对数正态假设时将比率度量与概率绘图法结合使用。

相似文献

2
The 4-parameter lognormal (SB) model of human exposure.
Ann Occup Hyg. 2004 Oct;48(7):617-22. doi: 10.1093/annhyg/meh071. Epub 2004 Sep 22.
3
Changes in the distribution of short-term exposure concentration with different averaging times.
Am Ind Hyg Assoc J. 1995 Jan;56(1):24-31. doi: 10.1080/15428119591017277.
4
Analysis of exposure biomarker relationships with the Johnson SBB distribution.
Ann Occup Hyg. 2007 Aug;51(6):533-41. doi: 10.1093/annhyg/mem033. Epub 2007 Aug 9.
5
Evaluation of the predictive abilities of a qualitative exposure assessment model.
J Occup Environ Hyg. 2007 Jun;4(6):440-7. doi: 10.1080/15459620701354705.
7
Indoor radon distribution in Switzerland: lognormality and Extreme Value Theory.瑞士室内氡分布:对数正态性与极值理论
J Environ Radioact. 2008 Apr;99(4):649-57. doi: 10.1016/j.jenvrad.2007.09.004. Epub 2007 Oct 26.
8
10
A method for evaluating the mean exposure from a lognormal distribution.
Am Ind Hyg Assoc J. 1987 Apr;48(4):374-9. doi: 10.1080/15298668791384896.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验