Maioli Margherita, Asara Yolande, Pintus Antonella, Ninniri Stefania, Bettuzzi Saverio, Scaltriti Maurizio, Galimi Francesco, Ventura Carlo
Department of Biomedical Sciences and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy.
Regen Med. 2007 Mar;2(2):193-202. doi: 10.2217/17460751.2.2.193.
The development of cell therapy for the rescue of damaged heart muscle is a major area of inquiry. Within this context, the establishment of a cardiogenic cell line may remarkably facilitate the molecular dissection of cardiac fate specification, a low-efficiency and still poorly understood process, paving the way for novel approaches in the use of stem cells for cardiac repair.
METHODS & RESULTS: We used GTR1 cells, a derivative of mouse R1 embryonic stem cells bearing the puromycin-resistance gene driven by the cardiomyocyte-specific alpha-myosin heavy chain promoter, affording a gene trapping selection of a virtually pure population of embryonic stem cell-derived cardiomyocytes. Third-generation lentiviral vectors were used to overexpress the prodynorphin gene, previously shown to orchestrate a dynorphinergic system acting as a major conductor of embryonic stem cell cardiogenesis. Lentiviral prodynorphin transduction remarkably enhanced the transcription of GATA-4 and Nkx-2.5, two cardiac lineage-promoting genes, resulting in a dramatic increase in the number of spontaneously beating cardiomyocytes. Transduced cells also exhibited a subcellular redistribution patterning of protein kinase C-beta, -delta and -epsilon, a major requirement in cardiac lineage commitment. This activation resulted from a sustained increase in the transcription of targeted protein kinase C genes. Prodynorphin transduction was selective in nature and failed to activate genes responsible for skeletal myogenesis or neuronal specification.
The cell line developed in this study provides a powerful in vitro model of cardiomyogenesis that may help clarify the cascade of transcriptional activation and signaling networks that push multipotent cells to take on the identity of a cardiac myocyte.
开发用于挽救受损心肌的细胞疗法是一个主要的研究领域。在此背景下,建立一种心脏源性细胞系可能会显著促进对心脏命运决定的分子解析,这一过程效率低下且仍未得到充分理解,为使用干细胞进行心脏修复的新方法铺平道路。
我们使用了GTR1细胞,它是小鼠R1胚胎干细胞的衍生物,带有由心肌细胞特异性α-肌球蛋白重链启动子驱动的嘌呤霉素抗性基因,可通过基因捕获选择几乎纯的胚胎干细胞衍生心肌细胞群体。使用第三代慢病毒载体过表达前强啡肽基因,该基因先前已被证明可协调一种强啡肽能系统,作为胚胎干细胞心脏发生的主要调控因子。慢病毒介导的前强啡肽转导显著增强了GATA-4和Nkx-2.5这两个促进心脏谱系的基因的转录,导致自发搏动心肌细胞数量大幅增加。转导细胞还表现出蛋白激酶C-β、-δ和-ε的亚细胞重新分布模式,这是心脏谱系定向的主要要求。这种激活是由于靶向蛋白激酶C基因转录的持续增加所致。前强啡肽转导具有选择性,未能激活负责骨骼肌生成或神经元定向的基因。
本研究中开发的细胞系提供了一个强大的心脏发生体外模型,可能有助于阐明促使多能细胞获得心肌细胞身份的转录激活级联和信号网络。