Ksoll Winfried B, Ishii Satoshi, Sadowsky Michael J, Hicks Randall E
Department of Biology, 1035 Kirby Drive, SSB 207, University of Minnesota Duluth, Duluth, MN 55812, USA.
Appl Environ Microbiol. 2007 Jun;73(12):3771-8. doi: 10.1128/AEM.02654-06. Epub 2007 Apr 27.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4x10(5) CFU cm-2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (>or=92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.
2004年6月至2005年8月期间,在苏必利尔湖明尼苏达湖岸线的三个地点采集了附石周丛生物群落样本,以确定在整个无冰季节是否存在粪大肠菌群和大肠杆菌。粪大肠菌群密度在初夏增加了高达4个数量级,到7月下旬达到峰值,高达1.4×10⁵ CFU/cm²,秋季下降。水平荧光团增强重复PCR DNA指纹分析表明,与动物宿主和污水中的大肠杆菌指纹文库相比,从这些周丛生物群落中分离出的2%至44%的大肠杆菌来源可以确定。水禽是可确定的周丛生物大肠杆菌菌株的主要来源(68%至99%)。几种周丛生物大肠杆菌分离株基因型相同(相似度≥92%),随时间反复分离,与来源文库相比无法确定,表明这些菌株是周丛生物群落的归化成员。如果将周丛生物中未鉴定的大肠杆菌菌株添加到已知来源文库中,那么上层水体中57%至81%的大肠杆菌菌株可以确定,水禽(15%至67%)、周丛生物(6%至28%)和污水排放(8%至28%)是主要潜在来源。接种的大肠杆菌在实验室微宇宙中迅速定殖于天然周丛生物中,并持续数周,一些细胞释放到上层水体中。我们的结果表明,从周丛生物释放到水道中的大肠杆菌混淆了将这种细菌用作近期粪便污染可靠指标的用途。