Suppr超能文献

小波变换与人工神经网络相结合在近红外光谱法测定片剂活性成分中的应用

Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy.

作者信息

Chalus Pascal, Walter Serge, Ulmschneider Michel

机构信息

F. Hoffmann-La Roche AG, 65/516, 4070 Basel, Switzerland.

出版信息

Anal Chim Acta. 2007 May 22;591(2):219-24. doi: 10.1016/j.aca.2007.03.076. Epub 2007 Apr 7.

Abstract

The pharmaceutical industry faces increasing regulatory pressure to optimize quality control. Content uniformity is a basic release test for solid dosage forms. To accelerate test throughput and comply with the Food and Drug Administration's process analytical technology initiative, attention is increasingly turning to nondestructive spectroscopic techniques, notably near-infrared (NIR) spectroscopy (NIRS). However, validation of NIRS using requisite linearity and standard error of prediction (SEP) criteria remains a challenge. This study applied wavelet transformation of the NIR spectra of a commercial tablet to build a model using conventional partial least squares (PLS) regression and an artificial neural network (ANN). Wavelet coefficients in the PLS and ANN models reduced SEP by up to 60% compared to PLS models using mathematical spectra pretreatment. ANN modeling yielded high-linearity calibration and a correlation coefficient exceeding 0.996.

摘要

制药行业面临着越来越大的监管压力,需要优化质量控制。含量均匀度是固体剂型的一项基本放行测试。为了加快测试通量并符合美国食品药品监督管理局的过程分析技术倡议,人们越来越关注无损光谱技术,尤其是近红外(NIR)光谱(NIRS)。然而,使用必要的线性度和预测标准误差(SEP)标准对近红外光谱进行验证仍然是一项挑战。本研究对一种市售片剂的近红外光谱进行小波变换,以使用传统的偏最小二乘法(PLS)回归和人工神经网络(ANN)建立模型。与使用数学光谱预处理的PLS模型相比,PLS和ANN模型中的小波系数使SEP降低了多达60%。ANN建模产生了高线性校准,相关系数超过0.996。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验