Suppr超能文献

人工神经网络在制药制造过程分析技术中的应用——综述。

Application of Artificial Neural Networks in the Process Analytical Technology of Pharmaceutical Manufacturing-a Review.

机构信息

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111, Hungary.

出版信息

AAPS J. 2022 Jun 14;24(4):74. doi: 10.1208/s12248-022-00706-0.

Abstract

Industry 4.0 has started to transform the manufacturing industries by embracing digitalization, automation, and big data, aiming for interconnected systems, autonomous decisions, and smart factories. Machine learning techniques, such as artificial neural networks (ANN), have emerged as potent tools to address the related computational tasks. These advancements have also reached the pharmaceutical industry, where the Process Analytical Technology (PAT) initiative has already paved the way for the real-time analysis of the processes and the science- and risk-based flexible production. This paper aims to assess the potential of ANNs within the PAT concept to aid the modernization of pharmaceutical manufacturing. The current state of ANNs is systematically reviewed for the most common manufacturing steps of solid pharmaceutical products, and possible research gaps and future directions are identified. In this way, this review could aid the further development of machine learning techniques for pharmaceutical production and eventually contribute to the implementation of intelligent manufacturing lines with automated quality assurance.

摘要

工业 4.0 通过拥抱数字化、自动化和大数据,旨在实现系统的互联互通、决策的自主化和智能工厂,从而开始改变制造业。机器学习技术,如人工神经网络(ANN),已经成为解决相关计算任务的有力工具。这些进展也已经触及到制药行业,其中过程分析技术(PAT)倡议已经为实时分析工艺以及基于科学和风险的灵活生产铺平了道路。本文旨在评估人工神经网络在 PAT 概念中的潜力,以帮助制药生产的现代化。系统地综述了人工神经网络在固体制药产品最常见的制造步骤中的现状,并确定了可能存在的研究差距和未来方向。通过这种方式,本综述可以帮助进一步开发制药生产的机器学习技术,并最终有助于实现具有自动化质量保证的智能生产线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验