Senkowski Daniel, Saint-Amour Dave, Kelly Simon P, Foxe John J
The Cognitive Neurophysiology Laboratory, Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
Neuroimage. 2007 Jul 1;36(3):877-88. doi: 10.1016/j.neuroimage.2007.01.053. Epub 2007 Mar 12.
In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.
在日常生活中,我们持续且毫不费力地整合来自运动物体的多种感官输入。例如,交通中车辆的声音和视觉感知为我们提供了关于车辆位置和运动的互补信息。在此,我们使用高密度脑电图描记法和局部自回归平均(LAURA)源估计来研究事件相关电位(ERP)中反映的运动中多感官物体的整合。在非自然主义的抽象运动刺激中呈现了一系列随机的自然主义多感官视听(AV)、单感官听觉(A)和单感官视觉(V)“溅水”片段(即一滴水落下并撞击水面)。对于多感官刺激,视觉片段起始比“溅水”起始提前100毫秒。对于自然主义物体,在声音起始后120 - 140毫秒开始观察到早期多感官整合效应,其分布源定位于枕叶皮质、颞叶小叶、岛叶和内侧前额叶回(MFG)。这些效应,连同在枕叶、颞叶和额叶广泛区域网络中发现的更长潜伏期的相互作用(210 - 250毫秒和300 - 350毫秒),表明运动中的自然主义物体在多感官整合的多个阶段进行处理。对于非自然主义刺激,整合效应模式有很大不同。与自然主义物体不同,未发现非自然主义物体的早期相互作用。非自然主义刺激的最早整合效应在声音起始后210 - 250毫秒观察到,包括大部分顶下小叶(IPC)。因此,由于组成感官元素的语义相关性(或缺乏语义相关性),多感官运动刺激激活的皮质网络存在明显差异。