Suppr超能文献

酿酒酵母中B型细胞周期蛋白的Sic1抑制剂的磷酸化并非必不可少,但有助于细胞周期的稳健性。

Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiae is not essential but contributes to cell cycle robustness.

作者信息

Cross Frederick R, Schroeder Lea, Bean James M

机构信息

The Rockefeller University, New York, New York 10021, USA.

出版信息

Genetics. 2007 Jul;176(3):1541-55. doi: 10.1534/genetics.107.073494. Epub 2007 May 4.

Abstract

In budding yeast, B-type cyclin (Clb)-dependent kinase activity is essential for S phase and mitosis. In newborn G(1) cells, Clb kinase accumulation is blocked, in part because of the Sic1 stoichiometric inhibitor. Previous results strongly suggested that G(1) cyclin-dependent Sic1 phosphorylation, and its consequent degradation, is essential for S phase. However, cells containing a precise endogenous gene replacement of SIC1 with SIC1-0P (all nine phosphorylation sites mutated) were fully viable. Unphosphorylatable Sic1 was abundant and nuclear throughout the cell cycle and effectively inhibited Clb kinase in vitro. SIC1-0P cells had a lengthened G(1) and increased G(1) cyclin transcriptional activation and variable delays in the budded part of the cell cycle. SIC1-0P was lethal when combined with deletion of CLB2, CLB3, or CLB5, the major B-type cyclins. Sic1 phosphorylation provides a sharp link between G(1) cyclin activation and Clb kinase activation, but failure of Sic1 phosphorylation and proteolysis imposes a variable cell cycle delay and extreme sensitivity to B-type cyclin dosage, rather than a lethal cell cycle block.

摘要

在出芽酵母中,B型细胞周期蛋白(Clb)依赖性激酶活性对于S期和有丝分裂至关重要。在新生的G1期细胞中,Clb激酶的积累受到阻碍,部分原因是由于化学计量的Sic1抑制剂。先前的结果强烈表明,G1期细胞周期蛋白依赖性的Sic1磷酸化及其随后的降解对于S期至关重要。然而,含有用SIC1-0P(所有九个磷酸化位点均发生突变)精确替换SIC1的内源性基因的细胞完全可以存活。不可磷酸化的Sic1在整个细胞周期中都很丰富且位于细胞核内,并在体外有效抑制Clb激酶。SIC1-0P细胞的G1期延长,G1期细胞周期蛋白转录激活增加,并且在细胞周期的出芽部分存在可变延迟。当与主要的B型细胞周期蛋白CLB2、CLB3或CLB5的缺失相结合时,SIC1-0P是致死性的。Sic1磷酸化在G1期细胞周期蛋白激活和Clb激酶激活之间提供了一个紧密的联系,但Sic1磷酸化和蛋白水解的失败会导致可变的细胞周期延迟以及对B型细胞周期蛋白剂量的极端敏感性,而不是致死性的细胞周期阻滞。

相似文献

2
Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins.
Biotechnol Adv. 2012 Jan-Feb;30(1):108-30. doi: 10.1016/j.biotechadv.2011.09.004. Epub 2011 Sep 18.
4
Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor.
FEBS J. 2012 Sep;279(18):3386-410. doi: 10.1111/j.1742-4658.2012.08542.x. Epub 2012 Mar 21.
5
The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start.
Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7772-6. doi: 10.1073/pnas.93.15.7772.
7
Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases.
Nature. 2001 Jul 19;412(6844):355-8. doi: 10.1038/35085610.
9
Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.
Nature. 2011 Oct 12;480(7375):128-31. doi: 10.1038/nature10560.
10

引用本文的文献

2
The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis.
Cell Cycle. 2020 Sep;19(17):2105-2118. doi: 10.1080/15384101.2020.1804222. Epub 2020 Aug 14.
5
The cell-cycle transcriptional network generates and transmits a pulse of transcription once each cell cycle.
Cell Cycle. 2019 Feb;18(4):363-378. doi: 10.1080/15384101.2019.1570655. Epub 2019 Feb 5.
6
Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in .
Genetics. 2018 Nov;210(3):1011-1037. doi: 10.1534/genetics.118.301421. Epub 2018 Sep 11.
8
Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6910-5. doi: 10.1073/pnas.1523824113. Epub 2016 Jun 7.
9
Design principles of the yeast G1/S switch.
PLoS Biol. 2013 Oct;11(10):e1001673. doi: 10.1371/journal.pbio.1001673. Epub 2013 Oct 1.
10
Functional overlap among distinct G1/S inhibitory pathways allows robust G1 arrest by yeast mating pheromones.
Mol Biol Cell. 2013 Dec;24(23):3675-88. doi: 10.1091/mbc.E13-07-0373. Epub 2013 Oct 2.

本文引用的文献

1
In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae.
PLoS Genet. 2006 Jul;2(7):e111. doi: 10.1371/journal.pgen.0020111. Epub 2006 Jun 5.
2
Noise in protein expression scales with natural protein abundance.
Nat Genet. 2006 Jun;38(6):636-43. doi: 10.1038/ng1807. Epub 2006 May 21.
3
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
Nature. 2006 Jun 15;441(7095):840-6. doi: 10.1038/nature04785. Epub 2006 May 14.
4
Coherence and timing of cell cycle start examined at single-cell resolution.
Mol Cell. 2006 Jan 6;21(1):3-14. doi: 10.1016/j.molcel.2005.10.035.
5
Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes.
Oncogene. 2005 Apr 18;24(17):2746-55. doi: 10.1038/sj.onc.1208606.
6
Integrative analysis of cell cycle control in budding yeast.
Mol Biol Cell. 2004 Aug;15(8):3841-62. doi: 10.1091/mbc.e03-11-0794. Epub 2004 May 28.
7
Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
Nat Cell Biol. 2004 Jan;6(1):59-66. doi: 10.1038/ncb1078. Epub 2003 Dec 14.
8
Securin and B-cyclin/CDK are the only essential targets of the APC.
Nat Cell Biol. 2003 Dec;5(12):1090-4. doi: 10.1038/ncb1066. Epub 2003 Nov 23.
10
Context of multiubiquitin chain attachment influences the rate of Sic1 degradation.
Mol Cell. 2003 Jun;11(6):1435-44. doi: 10.1016/s1097-2765(03)00221-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验