Institute of Technology, University of Tartu, Tartu, 50411, Estonia.
Department of Biology, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2020 Apr 15;11(1):1836. doi: 10.1038/s41467-020-15685-z.
Studies on multisite phosphorylation networks of cyclin-dependent kinase (CDK) targets have opened a new level of signaling complexity by revealing signal processing routes encoded into disordered proteins. A model target, the CDK inhibitor Sic1, contains linear phosphorylation motifs, docking sites, and phosphodegrons to empower an N-to-C terminally directed phosphorylation process. Here, we uncover a signal processing mechanism involving multi-step competition between mutually diversional phosphorylation routes within the S-CDK-Sic1 inhibitory complex. Intracomplex phosphorylation plays a direct role in controlling Sic1 degradation, and provides a mechanism to sequentially integrate both the G1- and S-CDK activities while keeping S-CDK inhibited towards other targets. The competing phosphorylation routes prevent premature Sic1 degradation and demonstrate how integration of MAPK from the pheromone pathway allows one to tune the competition of alternative phosphorylation paths. The mutually diversional phosphorylation circuits may be a general way for processing multiple kinase signals to coordinate cellular decisions in eukaryotes.
关于细胞周期蛋白依赖性激酶 (CDK) 靶标的多部位磷酸化网络的研究通过揭示编码在无序蛋白质中的信号处理途径,开辟了新的信号复杂性水平。作为一个模型靶标,CDK 抑制剂 Sic1 包含线性磷酸化基序、对接位点和磷酸化降解基序,以赋予从 N 端到 C 端的定向磷酸化过程。在这里,我们揭示了一种信号处理机制,涉及到 S-CDK-Sic1 抑制复合物内相互转换的磷酸化途径之间的多步竞争。 复合物内磷酸化在控制 Sic1 降解中发挥直接作用,并提供了一种机制,可在保持 S-CDK 对其他靶标的抑制的同时,顺序整合 G1 和 S-CDK 的活性。竞争的磷酸化途径防止 Sic1 过早降解,并展示了如何整合来自交配信息素途径的 MAPK 以调节替代磷酸化途径的竞争。相互转换的磷酸化回路可能是处理多个激酶信号以协调真核生物细胞决策的一般方式。