Hubbarde J E, Wild G, Wahl L M
Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada.
Genetics. 2007 Jul;176(3):1703-12. doi: 10.1534/genetics.107.072009. Epub 2007 May 4.
Estimating the fixation probability of a beneficial mutation has a rich history in theoretical population genetics. Typically, to attain mathematical tractability, we assume that generation times are fixed, while the number of offspring per individual is stochastic. However, fixation probabilities are extremely sensitive to these assumptions regarding life history. In this article, we compute the fixation probability for a "burst-death" life-history model. The model assumes that generation times are exponentially distributed, but the number of offspring per individual is constant. We estimate the fixation probability for populations of constant size and for populations that grow exponentially between periodic population bottlenecks. We find that the fixation probability is, in general, substantially lower in the burst-death model than in classical models. We also note striking qualitative differences between the fates of beneficial mutations that increase burst size and mutations that increase the burst rate. In particular, once the burst size is sufficiently large relative to the wild type, the burst-death model predicts that fixation probability depends only on burst rate.
在理论群体遗传学中,估计有益突变的固定概率有着丰富的历史。通常,为了实现数学上的易处理性,我们假设世代时间是固定的,而每个个体的后代数量是随机的。然而,固定概率对这些关于生活史的假设极为敏感。在本文中,我们计算了“爆发-死亡”生活史模型的固定概率。该模型假设世代时间呈指数分布,但每个个体的后代数量是恒定的。我们估计了恒定大小种群以及在周期性种群瓶颈之间呈指数增长的种群的固定概率。我们发现,一般来说,爆发-死亡模型中的固定概率远低于经典模型。我们还注意到增加爆发大小的有益突变和增加爆发率的突变在命运上存在显著的定性差异。特别是,一旦爆发大小相对于野生型足够大,爆发-死亡模型预测固定概率仅取决于爆发率。