Suppr超能文献

不同真核生物中与端粒相关的内切核酸酶缺陷型类佩内洛普逆转录元件

Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes.

作者信息

Gladyshev Eugene A, Arkhipova Irina R

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 May 29;104(22):9352-7. doi: 10.1073/pnas.0702741104. Epub 2007 May 4.

Abstract

The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group II introns. Here we report that a subset of PLEs found in bdelloid rotifers, basidiomycete fungi, stramenopiles, and plants, representing four different eukaryotic kingdoms, lack the endonuclease domain and are located at telomeres. The 5' truncated ends of these elements are telomere-oriented and typically capped by species-specific telomeric repeats. Most of them also carry several shorter stretches of telomeric repeats at or near their 3' ends, which could facilitate utilization of the telomeric G-rich 3' overhangs to prime reverse transcription. Many of these telomere-associated PLEs occupy a basal phylogenetic position close to the point of divergence from the telomerase-PLE common ancestor and may descend from the missing link between early eukaryotic retroelements and present-day telomerases.

摘要

端粒酶是在大多数真核生物中维持线性染色体末端的酶,其进化起源一直是一个有争议的话题。类佩内洛普元件(PLEs)是最近描述的一类真核生物反转录元件,其特征在于具有GIY-YIG核酸内切酶结构域以及与端粒酶和II类内含子相似的逆转录酶结构域。在此我们报告,在蛭形轮虫、担子菌纲真菌、不等鞭毛类和植物(代表四个不同的真核生物界)中发现的一部分PLEs缺乏核酸内切酶结构域,并且位于端粒处。这些元件的5'截短末端以端粒为导向,通常由物种特异性的端粒重复序列加帽。它们中的大多数在其3'末端或附近还带有几段较短的端粒重复序列,这可能有助于利用富含G的端粒3'突出端来引发逆转录。许多这些与端粒相关的PLEs占据了一个基础的系统发育位置,接近与端粒酶-PLE共同祖先分歧的点,并且可能起源于早期真核生物反转录元件与当今端粒酶之间缺失的环节。

相似文献

1
Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9352-7. doi: 10.1073/pnas.0702741104. Epub 2007 May 4.
2
Distribution and phylogeny of Penelope-like elements in eukaryotes.
Syst Biol. 2006 Dec;55(6):875-85. doi: 10.1080/10635150601077683.
3
Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres.
Mol Biol Evol. 2017 Sep 1;34(9):2245-2257. doi: 10.1093/molbev/msx159.
6
TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres.
Mol Biol Evol. 2004 Sep;21(9):1620-4. doi: 10.1093/molbev/msh180. Epub 2004 Jun 2.
9
Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase.
Genome Res. 2007 Dec;17(12):1909-18. doi: 10.1101/gr.6365107. Epub 2007 Nov 7.
10
Retroelements containing introns in diverse invertebrate taxa.
Nat Genet. 2003 Feb;33(2):123-4. doi: 10.1038/ng1074. Epub 2003 Jan 13.

引用本文的文献

1
Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication.
Plants (Basel). 2024 Dec 27;14(1):61. doi: 10.3390/plants14010061.
2
Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA.
Science. 2024 Oct 4;386(6717):eadq3977. doi: 10.1126/science.adq3977.
3
Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen.
Nat Commun. 2024 Jul 18;15(1):5787. doi: 10.1038/s41467-024-49919-1.
4
Orthoptera-TElib: a library of Orthoptera transposable elements for TE annotation.
Mob DNA. 2024 Mar 15;15(1):5. doi: 10.1186/s13100-024-00316-x.
5
Telomere Checkpoint in Development and Aging.
Int J Mol Sci. 2023 Nov 5;24(21):15979. doi: 10.3390/ijms242115979.
6
Repetitive DNA sequence detection and its role in the human genome.
Commun Biol. 2023 Sep 19;6(1):954. doi: 10.1038/s42003-023-05322-y.
7
Telomeres and telomerase: active but complex players in life-history decisions.
Biogerontology. 2024 Apr;25(2):205-226. doi: 10.1007/s10522-023-10060-z. Epub 2023 Aug 23.
8
A pilot study of LINE-1 copy number and telomere length with aging in human sperm.
J Assist Reprod Genet. 2023 Aug;40(8):1845-1854. doi: 10.1007/s10815-023-02857-1. Epub 2023 Jun 29.
10
The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology.
Int J Mol Sci. 2022 May 23;23(10):5847. doi: 10.3390/ijms23105847.

本文引用的文献

1
Distribution and phylogeny of Penelope-like elements in eukaryotes.
Syst Biol. 2006 Dec;55(6):875-85. doi: 10.1080/10635150601077683.
2
Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
Nature. 2007 Mar 8;446(7132):208-12. doi: 10.1038/nature05560.
3
A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers.
Gene. 2007 Apr 1;390(1-2):136-45. doi: 10.1016/j.gene.2006.09.025. Epub 2006 Oct 5.
4
Genomic organization of the Drosophila telomere retrotransposable elements.
Genome Res. 2006 Oct;16(10):1231-40. doi: 10.1101/gr.5348806. Epub 2006 Sep 8.
5
Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles.
Nat Struct Mol Biol. 2006 Jul;13(7):655-60. doi: 10.1038/nsmb1107. Epub 2006 Jun 18.
6
Application of phylogenetic networks in evolutionary studies.
Mol Biol Evol. 2006 Feb;23(2):254-67. doi: 10.1093/molbev/msj030. Epub 2005 Oct 12.
7
Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori.
Chromosome Res. 2005;13(5):455-67. doi: 10.1007/s10577-005-0990-9.
9
Repbase Update, a database of eukaryotic repetitive elements.
Cytogenet Genome Res. 2005;110(1-4):462-7. doi: 10.1159/000084979.
10
Diverse DNA transposons in rotifers of the class Bdelloidea.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11781-6. doi: 10.1073/pnas.0505333102. Epub 2005 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验