Ozaita Andrés, Puighermanal Emma, Maldonado Rafael
Laboratori de Neurofarmacologia. Facultat de Ciencies de la Salut i de la Vida. Universitat Pompeu Fabra, Barcelona, Spain.
J Neurochem. 2007 Aug;102(4):1105-14. doi: 10.1111/j.1471-4159.2007.04642.x. Epub 2007 May 4.
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneration models. However, the intraneuronal signaling pathways activated in vivo by THC underlying its central effects remain poorly understood. We report that THC acute administration (10 mg/kg, i.p.) increases the phosphorylation of Akt in mouse hippocampus, striatum, and cerebellum. This phosphorylation was mediated by CB1 receptors as it was blocked by the selective CB1 antagonist rimonabant. Moreover, PI3K inhibition by wortmannin abrogated THC-induced phosphorylation of Akt, but blockade of extracellular signal-regulated protein kinases by SL327 did not modify this activation/phosphorylation of Akt. Moreover, administration of the dopaminergic D1 (SCH 23390) and D2 (raclopride) receptor antagonists did not block the activation of PI3K/Akt pathway induced in the striatum by cannabinoid receptor stimulation, suggesting that this effect is independent of the dopaminergic system. In addition, THC increased the phosphorylation of glycogen synthase kinase 3 beta. Therefore, activation of the PI3K/Akt/GSK-3 signaling pathway may be related to the in vivo neuroprotective properties attributed to cannabinoids.
Δ9-四氢大麻酚(THC)是大麻制剂中的主要精神活性成分,主要通过G蛋白偶联受体CB1发挥其中枢作用,CB1是内源性大麻素系统的一个组成部分。多项体外和体内研究报道了大麻素在兴奋性毒性和神经退行性变模型中的神经保护作用。然而,THC在体内激活的介导其中枢作用的神经元内信号通路仍知之甚少。我们报道,急性给予THC(10 mg/kg,腹腔注射)可增加小鼠海马、纹状体和小脑中Akt的磷酸化。这种磷酸化是由CB1受体介导的,因为它被选择性CB1拮抗剂利莫那班阻断。此外,渥曼青霉素抑制PI3K可消除THC诱导的Akt磷酸化,但SL327阻断细胞外信号调节蛋白激酶并不会改变Akt的这种激活/磷酸化。此外,给予多巴胺能D1(SCH 23390)和D2(雷氯必利)受体拮抗剂并不会阻断大麻素受体刺激在纹状体中诱导的PI3K/Akt途径的激活,这表明这种效应独立于多巴胺能系统。此外,THC增加了糖原合酶激酶3β的磷酸化。因此,PI3K/Akt/GSK-3信号通路的激活可能与大麻素在体内的神经保护特性有关。