Suppr超能文献

基于参数和半参数模型的、针对存在项目无回答的两阶段整群样本有限总体均值的估计。

Parametric and semiparametric model-based estimates of the finite population mean for two-stage cluster samples with item nonresponse.

作者信息

Yuan Ying, Little Roderick J A

机构信息

Department of Biostatistics and Applied Mathematics, M.D. Anderson Cancer Center, Houston, Texas 77030, USA.

出版信息

Biometrics. 2007 Dec;63(4):1172-80. doi: 10.1111/j.1541-0420.2007.00816.x. Epub 2007 May 8.

Abstract

This article concerns item nonresponse adjustment for two-stage cluster samples. Specifically, we focus on two types of nonignorable nonresponse: nonresponse depending on covariates and underlying cluster characteristics, and depending on covariates and the missing outcome. In these circumstances, standard weighting and imputation adjustments are liable to be biased. To obtain consistent estimates, we extend the standard random-effects model by modeling these two types of missing data mechanism. We also propose semiparametric approaches based on fitting a spline on the propensity score, to weaken assumptions about the relationship between the outcome and covariates. These new methods are compared with existing approaches by simulation. The National Health and Nutrition Examination Survey data are used to illustrate these approaches.

摘要

本文关注两阶段整群样本的项目无应答调整。具体而言,我们聚焦于两种不可忽略的无应答类型:一种是取决于协变量和潜在整群特征的无应答,另一种是取决于协变量和缺失结果的无应答。在这些情况下,标准加权和插补调整容易产生偏差。为了获得一致的估计量,我们通过对这两种缺失数据机制进行建模来扩展标准随机效应模型。我们还提出了基于倾向得分拟合样条的半参数方法,以弱化关于结果与协变量之间关系的假设。通过模拟将这些新方法与现有方法进行比较。使用国家健康与营养检查调查数据来说明这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验