Sia Charles, Hänninen Arno
United Biomedical Inc., 25 Davids Drive, Hauppauge, New York 11788, USA.
Rev Diabet Stud. 2006 Spring;3(1):39-46. doi: 10.1900/RDS.2006.3.39. Epub 2006 May 10.
Cytokine-induced beta-cell death is the end-stage event in the pathogenesis of autoimmune diabetes. Beside cytokines, several pro-apoptotic pathways mediated through nitric oxide, reactive oxygen species, glucose and Fas ligation can be involved, suggesting that programmed cell death (PCD) is a critical aspect in this process. The apoptotic program is activated by the utilization of the Fas/Fas-ligand (FasL) axis in the interrelation of T and beta-cells. Evidence for this mechanism arose from the finding that beta-cells in NOD mice could be protected from apoptosis by blocking the Fas-FasL pathway. Glucose is a regulator of Fas expression on human beta-cells and elevated glucose levels may contribute to accelerated beta-cell destruction by constitutively expressed FasL independently of the autoimmune reaction. It can thus be concluded that immunological, as well as metabolic, pathways may act in concert to cause beta-cell destruction. Much experimental work has been carried out to manipulate beta-cells in transgenic mice expressing apoptosis modulators in islets. For example, the transcription factor, nuclear factor-kappaB (NF-kappaB), promotes the expression of several beta-cell genes, including pro- and anti-apoptotic genes. The prevention of cytokine-induced gene expression of several NF-kappaB targets, such as inducible nitric oxide synthase, Fas, and manganese superoxide dismutase can prevent beta-cell death. Thus, modulating the expression of apoptotic mediators may significantly affect the end-stage outcome of autoimmune diabetes and could thus be a potential avenue for clinical therapy, even though currently existing findings remain exploratory due to the restrictions of transgenic mouse models.
细胞因子诱导的β细胞死亡是自身免疫性糖尿病发病机制中的终末阶段事件。除细胞因子外,通过一氧化氮、活性氧、葡萄糖和Fas配体介导的几种促凋亡途径也可能参与其中,这表明程序性细胞死亡(PCD)是这一过程的关键方面。凋亡程序是由T细胞和β细胞相互关系中Fas/Fas配体(FasL)轴的利用所激活的。这一机制的证据来自于以下发现:通过阻断Fas - FasL途径可保护NOD小鼠的β细胞免于凋亡。葡萄糖是人β细胞上Fas表达的调节因子,升高的葡萄糖水平可能通过组成性表达的FasL促进β细胞的加速破坏,而与自身免疫反应无关。因此可以得出结论,免疫途径和代谢途径可能共同作用导致β细胞破坏。在胰岛中表达凋亡调节因子的转基因小鼠中,已经开展了许多关于操纵β细胞的实验工作。例如,转录因子核因子-κB(NF-κB)促进包括促凋亡和抗凋亡基因在内的几种β细胞基因的表达。预防细胞因子诱导的几种NF-κB靶标的基因表达,如诱导型一氧化氮合酶、Fas和锰超氧化物歧化酶,可以预防β细胞死亡。因此,调节凋亡介质的表达可能会显著影响自身免疫性糖尿病的终末阶段结局,从而可能成为临床治疗的潜在途径,尽管由于转基因小鼠模型的限制,目前已有的发现仍处于探索阶段。