Suppr超能文献

基于体外安全药理学分析数据对滥交行为进行建模。

Modeling promiscuity based on in vitro safety pharmacology profiling data.

作者信息

Azzaoui Kamal, Hamon Jacques, Faller Bernard, Whitebread Steven, Jacoby Edgar, Bender Andreas, Jenkins Jeremy L, Urban Laszlo

机构信息

CPC/LFP/MLI, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, 4002 Basel, Switzerland.

出版信息

ChemMedChem. 2007 Jun;2(6):874-80. doi: 10.1002/cmdc.200700036.

Abstract

This study describes a method for mining and modeling binding data obtained from a large panel of targets (in vitro safety pharmacology) to distinguish differences between promiscuous and selective compounds. Two naïve Bayes models for promiscuity and selectivity were generated and validated on a test set as well as publicly available drug databases. The model shows a higher score (lower promiscuity) for marketed drugs than for compounds in early development or compounds that failed during clinical development. Such models can be used in triaging high-throughput screening data or for lead optimization.

摘要

本研究描述了一种挖掘和建模从大量靶点(体外安全药理学)获得的结合数据的方法,以区分混杂性化合物和选择性化合物之间的差异。生成了两个关于混杂性和选择性的朴素贝叶斯模型,并在一个测试集以及公开可用的药物数据库上进行了验证。该模型显示,上市药物的得分(混杂性更低)高于处于早期开发阶段的化合物或在临床开发中失败的化合物。此类模型可用于筛选高通量筛选数据或进行先导化合物优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验