Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China.
Shanghai Zelixir Biotech Company Ltd., China.
Protein Sci. 2024 Oct;33(10):e5167. doi: 10.1002/pro.5167.
Predicting the binding of ligands to the human proteome via reverse-docking methods enables the understanding of ligand's interactions with potential protein targets in the human body, thereby facilitating drug repositioning and the evaluation of potential off-target effects or toxic side effects of drugs. In this study, we constructed 11 reverse docking pipelines by integrating site prediction tools (PointSite and SiteMap), docking programs (Glide and AutoDock Vina), and scoring functions (Glide, Autodock Vina, RTMScore, DeepRMSD, and OnionNet-SFCT), and then thoroughly benchmarked their predictive capabilities. The results show that the Glide_SFCT (PS) pipeline exhibited the best target prediction performance based on the atomic structure models in AlphaFold2 human proteome. It achieved a success rate of 27.8% when considering the top 100 ranked prediction. This pipeline effectively narrows the range of potential targets within the human proteome, laying a foundation for drug target prediction, off-target assessment, and toxicity prediction, ultimately boosting drug development. By facilitating these critical aspects of drug discovery and development, our work has the potential to ultimately accelerate the identification of new therapeutic agents and improve drug safety.
通过反向对接方法预测配体与人蛋白质组的结合,能够理解配体与人体内潜在蛋白质靶标的相互作用,从而促进药物重定位以及评估药物的潜在脱靶效应或毒性副作用。在这项研究中,我们构建了 11 个反向对接管道,整合了位点预测工具(PointSite 和 SiteMap)、对接程序(Glide 和 AutoDock Vina)和评分函数(Glide、Autodock Vina、RTMScore、DeepRMSD 和 OnionNet-SFCT),并对它们的预测能力进行了全面的基准测试。结果表明,基于 AlphaFold2 人蛋白质组的原子结构模型,Glide_SFCT(PS)管道在目标预测方面表现出最佳性能。当考虑前 100 个预测排名时,它的成功率为 27.8%。该管道有效地缩小了人蛋白质组内潜在靶标的范围,为药物靶标预测、脱靶评估和毒性预测奠定了基础,最终促进了药物开发。通过促进药物发现和开发的这些关键方面,我们的工作有可能最终加速新治疗剂的识别并提高药物安全性。