Suppr超能文献

小脑浦肯野细胞的放电动力学

Firing dynamics of cerebellar purkinje cells.

作者信息

Fernandez Fernando R, Engbers Jordan D T, Turner Ray W

机构信息

Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.

出版信息

J Neurophysiol. 2007 Jul;98(1):278-94. doi: 10.1152/jn.00306.2007. Epub 2007 May 9.

Abstract

Knowledge of intrinsic neuronal firing dynamics is a critical first step to establishing an accurate biophysical model of any neuron. In this study we examined cerebellar Purkinje cells to determine the bifurcations likely to underlie firing dynamics within a biophysically realistic and experimentally supported model. We show that Purkinje cell dynamics are consistent with a system undergoing a saddle-node bifurcation of fixed points in the transition from rest to firing and a saddle homoclinic bifurcation from firing to rest. Our analyses account for numerous observed Purkinje cell firing properties that include bistability, plateau potentials, specific aspects of the frequency-current (F-I) relationship, first spike latency, and the ability for climbing fiber input to induce state transitions in the bistable regime. We also experimentally confirm new properties predicted from our model and analysis that include the presence of a depolarizing afterpotential (DAP), the ability to fire at low frequencies (<50 Hz) and with a high gain in the F-I relationship, and a bistable region limited to low-frequency firing. Purkinje cell dynamics, including bistability, prove to arise from numerous biophysical factors that include the DAP, fast refractory dynamics, and a long membrane time constant. A hyperpolarizing activated cation current (I(H)) is shown not to be directly involved in establishing bistable dynamics but rather reduces the range for bistability. A combined electrophysiological and modeling approach thus accounts for several properties of Purkinje cells, providing a firm basis from which to assess Purkinje cell output patterns.

摘要

了解神经元内在放电动力学是建立任何神经元准确生物物理模型的关键第一步。在本研究中,我们研究了小脑浦肯野细胞,以确定在一个生物物理上逼真且得到实验支持的模型中,可能构成放电动力学基础的分岔情况。我们表明,浦肯野细胞动力学与一个系统一致,该系统在从静息到放电的转变中经历了定点的鞍结分岔,在从放电到静息的过程中经历了鞍同宿分岔。我们的分析解释了许多观察到的浦肯野细胞放电特性,包括双稳性、平台电位、频率-电流(F-I)关系的特定方面、首次放电潜伏期,以及攀缘纤维输入在双稳状态下诱导状态转变的能力。我们还通过实验证实了从我们的模型和分析中预测的新特性,包括去极化后电位(DAP)的存在、在低频(<50 Hz)下放电以及在F-I关系中具有高增益的能力,以及限于低频放电的双稳区域。浦肯野细胞动力学,包括双稳性,被证明是由许多生物物理因素引起的,这些因素包括DAP、快速不应期动力学和长膜时间常数。超极化激活阳离子电流(I(H))被证明不直接参与建立双稳动力学,而是减小了双稳性的范围。因此,一种结合电生理学和建模的方法解释了浦肯野细胞的几种特性,为评估浦肯野细胞输出模式提供了坚实的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验