Suppr超能文献

模拟小脑微电路:一个长期问题的新策略。

Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue.

作者信息

D'Angelo Egidio, Antonietti Alberto, Casali Stefano, Casellato Claudia, Garrido Jesus A, Luque Niceto Rafael, Mapelli Lisa, Masoli Stefano, Pedrocchi Alessandra, Prestori Francesca, Rizza Martina Francesca, Ros Eduardo

机构信息

Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy.

NearLab - NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy.

出版信息

Front Cell Neurosci. 2016 Jul 8;10:176. doi: 10.3389/fncel.2016.00176. eCollection 2016.

Abstract

The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate "realistic" models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems.

摘要

自神经科学研究伊始,小脑微电路就一直是理论和计算建模的实验平台。小脑规则的神经结构激发了人们对其电路如何控制运动学习和协调这一长期问题的不同解决方案。最初,小脑网络是使用统计拓扑方法建模的,后来通过考虑局部微电路的几何组织对其进行了扩展。然而,随着解剖学和生理学研究的进展,新的发现揭示了连接、神经元动力学和可塑性的惊人丰富性,这就需要改变建模策略,以便将网络的众多基本方面纳入一个集成且易于更新的计算框架。最近,使用自下而上策略的生物物理精确“现实”模型考虑了详细的连接性和神经元非线性膜动力学。在这篇观点综述中,我们将考虑当前的技术水平,并讨论这些初步努力如何能够进一步改进。此外,我们将考虑包括脉冲发放小脑网络在内的具身神经机器人模型如何有助于解释分布式可塑性形式的作用和相互作用。我们设想,现实建模与闭环模拟相结合,将有助于把握小脑计算的本质,并最终应用于神经系统疾病和神经机器人控制系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f2/4937064/dbf04f81a2a0/fncel-10-00176-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验