Gropp A, Winking H, Frank F, Noack G, Fredga K
Abteilung für Pathologie der Medizinischen Hochschule Lübeck, Lübeck, West Germany.
Cytogenet Cell Genet. 1976;17(6):343-58. doi: 10.1159/000130737.
The wood lemming displays certain peculiar features: (1) The sex ratio shows a prevalence of females (FRANK, 1966; KALELA and OKSALA, 1966), and some females produce only female offspring (KALELA and OKSALA, 1966). (2) In a considerable proportion (in the present material, slightly less than half) of the females, an XY chromosome complement is found in the somatic tissues, but the Y is absent in the germ line of those studied (Fredga et al., 1976). Therefore, (3) a mechanism of double nondisjunction in early fetal life of XY females has to be postulated, which replaces the Y in the germ line by duplication of the X. It is assumed (4) that the X of XY females bears a sex-reversal factor that affects the male determining action of the Y (Fredga et al., 1977). There is (5) a strong presumption that in most cases the XY females are those that produce daughters only, but (6) a few exceptions may occur (FRANK, unpublished observations), suggesting that the regulation according to assumption 3 (perhaps also to 4) is incomplete in XY females. In the present report, four females are described with a 31,XO karyotype, two females with 33,XYY or 32,XY/33,XYY, respectively, two males with a 33,XXY, and one male with a 32,XX/33,XXY karyotype, as observed in a consecutive series of 502 wood lemmings. The incidence of sex-chromosome anomalies in liveborn and adult animals was 2.3%; the overall incidence, including embryos, was 1.79%. Neither the somatic XO constitution nor the existence of an extra Y in females precludes fertility. However, the XXY condition in the male results in sterility. There is certain evidence that an instability of the proposed mechanism for double mitotic nondisjunction of the sex chromosomes in oogonia accounts for the high rate of sex-chromosome aberrations in wood lemmings, at least when the mother is XY.
(1)性别比例显示雌性占优势(弗兰克,1966年;卡莱拉和奥克萨拉,1966年),并且一些雌性只生育雌性后代(卡莱拉和奥克萨拉,1966年)。(2)在相当比例(在本研究材料中,略少于一半)的雌性中,在体细胞组织中发现XY染色体组成,但在所研究的这些雌性的生殖细胞系中Y染色体缺失(弗雷德加等人,1976年)。因此,(3)必须假定在XY雌性胎儿早期生活中有一个双不分离机制,该机制通过X染色体的复制在生殖细胞系中取代Y染色体。据推测(4)XY雌性的X染色体带有一个性别反转因子,该因子影响Y染色体的雄性决定作用(弗雷德加等人,1977年)。有强烈的推测(5)在大多数情况下,XY雌性就是那些只生女儿的雌性,但(6)可能会出现一些例外情况(弗兰克,未发表的观察结果),这表明根据假设3(也许还有假设4)的调控在XY雌性中是不完全的。在本报告中,描述了在连续观察的502只林旅鼠中,有4只雌性具有31,XO核型,2只雌性分别具有33,XYY或32,XY/33,XYY核型,2只雄性具有33,XXY核型,1只雄性具有32,XX/33,XXY核型。活产和成年动物中性染色体异常的发生率为2.3%;包括胚胎在内的总体发生率为1.79%。雌性体细胞中的XO组成或额外的Y染色体的存在都不影响生育能力。然而,雄性中的XXY状况会导致不育。有一定证据表明,卵原细胞中所提出的性染色体双有丝分裂不分离机制的不稳定性导致了林旅鼠中性染色体畸变的高发生率,至少当母亲是XY时是这样。