Fox G C, Shafiq M, Briggs D C, Knowles P P, Collister M, Didmon M J, Makrantoni V, Dickinson R J, Hanrahan S, Totty N, Stark M J R, Keyse S M, McDonald N Q
Structural Biology Laboratory, The London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
Nature. 2007 May 24;447(7143):487-92. doi: 10.1038/nature05804. Epub 2007 May 9.
Reactive oxygen species trigger cellular responses by activation of stress-responsive mitogen-activated protein kinase (MAPK) signalling pathways. Reversal of MAPK activation requires the transcriptional induction of specialized cysteine-based phosphatases that mediate MAPK dephosphorylation. Paradoxically, oxidative stresses generally inactivate cysteine-based phosphatases by thiol modification and thus could lead to sustained or uncontrolled MAPK activation. Here we describe how the stress-inducible MAPK phosphatase, Sdp1, presents an unusual solution to this apparent paradox by acquiring enhanced catalytic activity under oxidative conditions. Structural and biochemical evidence reveals that Sdp1 employs an intramolecular disulphide bridge and an invariant histidine side chain to selectively recognize a tyrosine-phosphorylated MAPK substrate. Optimal activity critically requires the disulphide bridge, and thus, to the best of our knowledge, Sdp1 is the first example of a cysteine-dependent phosphatase that couples oxidative stress with substrate recognition. We show that Sdp1, and its paralogue Msg5, have similar properties and belong to a new group of phosphatases unique to yeast and fungal taxa.
活性氧通过激活应激反应性丝裂原活化蛋白激酶(MAPK)信号通路触发细胞反应。MAPK激活的逆转需要转录诱导专门的基于半胱氨酸的磷酸酶,这些磷酸酶介导MAPK去磷酸化。矛盾的是,氧化应激通常通过硫醇修饰使基于半胱氨酸的磷酸酶失活,因此可能导致MAPK的持续或失控激活。在这里,我们描述了应激诱导的MAPK磷酸酶Sdp1如何通过在氧化条件下获得增强的催化活性,为这一明显的矛盾提供了一个不同寻常的解决方案。结构和生化证据表明,Sdp1利用分子内二硫键和不变的组氨酸侧链选择性识别酪氨酸磷酸化的MAPK底物。最佳活性关键需要二硫键,因此,据我们所知,Sdp1是第一个将氧化应激与底物识别相结合的半胱氨酸依赖性磷酸酶的例子。我们表明,Sdp1及其旁系同源物Msg5具有相似的特性,属于酵母和真菌类群特有的一组新的磷酸酶。