Suppr超能文献

炭疽芽孢杆菌nrdE I组内含子中的一种功能性归巢内切核酸酶。

A functional homing endonuclease in the Bacillus anthracis nrdE group I intron.

作者信息

Nord David, Torrents Eduard, Sjöberg Britt-Marie

机构信息

Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden.

出版信息

J Bacteriol. 2007 Jul;189(14):5293-301. doi: 10.1128/JB.00234-07. Epub 2007 May 11.

Abstract

The essential Bacillus anthracis nrdE gene carries a self-splicing group I intron with a putative homing endonuclease belonging to the GIY-YIG family. Here, we show that the nrdE pre-mRNA is spliced and that the homing endonuclease cleaves an intronless nrdE gene 5 nucleotides (nt) upstream of the intron insertion site, producing 2-nt 3' extensions. We also show that the sequence required for efficient cleavage spans at least 4 bp upstream and 31 bp downstream of the cleaved coding strand. The position of the recognition sequence in relation to the cleavage position is as expected for a GIY-YIG homing endonuclease. Interestingly, nrdE genes from several other Bacillaceae were also susceptible to cleavage, with those of Bacillus cereus, Staphylococcus epidermidis (nrdE1), B. anthracis, and Bacillus thuringiensis serovar konkukian being better substrates than those of Bacillus subtilis, Bacillus lichenformis, and S. epidermidis (nrdE2). On the other hand, nrdE genes from Lactococcus lactis, Escherichia coli, Salmonella enterica serovar Typhimurium, and Corynebacterium ammoniagenes were not cleaved. Intervening sequences (IVSs) residing in protein-coding genes are often found in enzymes involved in DNA metabolism, and the ribonucleotide reductase nrdE gene is a frequent target for self-splicing IVSs. A comparison of nrdE genes from seven gram-positive low-G+C bacteria, two bacteriophages, and Nocardia farcinica showed five different insertion sites for self-splicing IVSs within the coding region of the nrdE gene.

摘要

炭疽芽孢杆菌的必需基因nrdE携带一个自我剪接的I组内含子,其具有一个属于GIY - YIG家族的推定归巢内切核酸酶。在此,我们表明nrdE前体mRNA会发生剪接,并且归巢内切核酸酶会在无内含子的nrdE基因内含子插入位点上游5个核苷酸(nt)处切割,产生2个核苷酸的3'末端延伸。我们还表明,有效切割所需的序列在切割的编码链上游至少跨越4 bp,下游跨越31 bp。识别序列相对于切割位置的位置与GIY - YIG归巢内切核酸酶的预期一致。有趣的是,其他几种芽孢杆菌科细菌的nrdE基因也易于被切割,其中蜡样芽孢杆菌、表皮葡萄球菌(nrdE1)、炭疽芽孢杆菌和苏云金芽孢杆菌 konkukian血清型的nrdE基因比枯草芽孢杆菌、地衣芽孢杆菌和表皮葡萄球菌(nrdE2)的nrdE基因是更好的底物。另一方面,来自乳酸乳球菌、大肠杆菌、鼠伤寒沙门氏菌和产氨棒状杆菌的nrdE基因未被切割。存在于蛋白质编码基因中的间隔序列(IVS)经常在参与DNA代谢的酶中发现,并且核糖核苷酸还原酶nrdE基因是自我剪接IVS的常见靶点。对来自七种革兰氏阳性低G + C细菌、两种噬菌体和诺卡氏菌的nrdE基因进行比较,发现在nrdE基因编码区内自我剪接IVS有五个不同的插入位点。

相似文献

1
A functional homing endonuclease in the Bacillus anthracis nrdE group I intron.
J Bacteriol. 2007 Jul;189(14):5293-301. doi: 10.1128/JB.00234-07. Epub 2007 May 11.
2
Unconventional GIY-YIG homing endonuclease encoded in group I introns in closely related strains of the Bacillus cereus group.
Nucleic Acids Res. 2008 Jan;36(1):300-10. doi: 10.1093/nar/gkm1016. Epub 2007 Nov 21.
3
The evolution of homing endonuclease genes and group I introns in nuclear rDNA.
Mol Biol Evol. 2004 Jan;21(1):129-40. doi: 10.1093/molbev/msh005. Epub 2003 Oct 31.
4
A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages.
Curr Biol. 2009 Feb 10;19(3):218-22. doi: 10.1016/j.cub.2008.11.069.
5
Homing endonuclease structure and function.
Q Rev Biophys. 2005 Feb;38(1):49-95. doi: 10.1017/S0033583505004063. Epub 2005 Dec 9.
6
Expression, purification, and biochemical characterization of the intron-encoded endonuclease, I-CreII.
Protein Expr Purif. 2005 Dec;44(2):162-72. doi: 10.1016/j.pep.2005.05.014. Epub 2005 Jun 24.
8
Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages.
J Mol Biol. 2010 Jan 22;395(3):457-74. doi: 10.1016/j.jmb.2009.10.054. Epub 2009 Nov 5.
9
DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI.
Nature. 1998 Jul 2;394(6688):96-101. doi: 10.1038/27952.

引用本文的文献

2
NrdH-redoxin protein mediates high enzyme activity in manganese-reconstituted ribonucleotide reductase from Bacillus anthracis.
J Biol Chem. 2011 Sep 23;286(38):33053-60. doi: 10.1074/jbc.M111.278119. Epub 2011 Aug 6.
3
Learning to live together: mutualism between self-splicing introns and their hosts.
BMC Biol. 2011 Apr 11;9:22. doi: 10.1186/1741-7007-9-22.
4
Activity and specificity of the bacterial PD-(D/E)XK homing endonuclease I-Ssp6803I.
J Mol Biol. 2009 Feb 6;385(5):1498-510. doi: 10.1016/j.jmb.2008.10.096. Epub 2008 Nov 12.
6
Unconventional GIY-YIG homing endonuclease encoded in group I introns in closely related strains of the Bacillus cereus group.
Nucleic Acids Res. 2008 Jan;36(1):300-10. doi: 10.1093/nar/gkm1016. Epub 2007 Nov 21.
7
Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns.
BMC Evol Biol. 2007 Sep 8;7:159. doi: 10.1186/1471-2148-7-159.
8
Coevolution of a homing endonuclease and its host target sequence.
J Mol Biol. 2007 Oct 5;372(5):1305-19. doi: 10.1016/j.jmb.2007.07.052. Epub 2007 Aug 2.

本文引用的文献

2
The Bacillus cereus group: novel aspects of population structure and genome dynamics.
J Appl Microbiol. 2006 Sep;101(3):579-93. doi: 10.1111/j.1365-2672.2006.03087.x.
3
Induction of competence regulons as a general response to stress in gram-positive bacteria.
Annu Rev Microbiol. 2006;60:451-75. doi: 10.1146/annurev.micro.60.080805.142139.
4
Ribonucleotide reductases.
Annu Rev Biochem. 2006;75:681-706. doi: 10.1146/annurev.biochem.75.103004.142443.
5
Subspecies-specific distribution of intervening sequences in the Bacillus subtilis prophage ribonucleotide reductase genes.
Syst Appl Microbiol. 2007 Jan;30(1):8-15. doi: 10.1016/j.syapm.2006.02.007. Epub 2006 Apr 18.
6
Homing endonuclease structure and function.
Q Rev Biophys. 2005 Feb;38(1):49-95. doi: 10.1017/S0033583505004063. Epub 2005 Dec 9.
7
The ins and outs of DNA transfer in bacteria.
Science. 2005 Dec 2;310(5753):1456-60. doi: 10.1126/science.1114021.
8
Efficient growth inhibition of Bacillus anthracis by knocking out the ribonucleotide reductase tyrosyl radical.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):17946-51. doi: 10.1073/pnas.0506410102. Epub 2005 Dec 1.
9
SegH and Hef: two novel homing endonucleases whose genes replace the mobC and mobE genes in several T4-related phages.
Nucleic Acids Res. 2005 Oct 27;33(19):6203-13. doi: 10.1093/nar/gki932. Print 2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验