Suppr超能文献

核核糖体DNA中归巢内切酶基因和I类内含子的进化

The evolution of homing endonuclease genes and group I introns in nuclear rDNA.

作者信息

Haugen Peik, Reeb Valérie, Lutzoni François, Bhattacharya Debashish

机构信息

Department of Biological Sciences and Center for Comparative Genomics, University of Iowa, USA.

出版信息

Mol Biol Evol. 2004 Jan;21(1):129-40. doi: 10.1093/molbev/msh005. Epub 2003 Oct 31.

Abstract

Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns.

摘要

I 组内含子是自主遗传元件,能够催化自身从前体RNA中切除。了解I组内含子如何在核糖体(r)DNA中移动仍然是进化生物学中的一个重要问题。人们提出了两种模型来解释I组内含子的移动。第一种称为归巢,是由内含子编码的归巢内切酶的作用导致的,该酶识别并切割内含子插入位点或其附近的无内含子等位基因。或者,内含子可以通过反向剪接插入RNA中。在这里,我们展示了来自真菌核糖体rDNA的两个大型I组内含子的序列,它们都编码推定的全长归巢内切酶基因(HEGs)。还报道了不同真菌物种中的五个残余HEGs。这使得已知的核HEGs总数从15个增加到22个。我们确定了所有已知核HEGs及其相关内含子的系统发育。我们发现有证据表明,在通常关系较远的谱系中,HEGs可以独立于内含子侵入同源和异源内含子,以及在不同内含子外周环之间和内含子DNA的正义链与反义链之间发生HEGs的“转换”。这些结果表明核HEGs经常被转移。然而,HEGs的侵入似乎仅限于同一或相邻位点的现有内含子。为了更详细地研究内含子与HEG的关系,真菌小亚基rDNA中的S943 I组内含子被用作模型系统。S943 HEG在S943内含子中以功能性、失活或残余开放阅读框的形式广泛分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验