Suppr超能文献

乙酰辅酶A合成酶中底物结合及构象变化的生化与晶体学分析

Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase.

作者信息

Reger Albert S, Carney Jill M, Gulick Andrew M

机构信息

Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203-1102, USA.

出版信息

Biochemistry. 2007 Jun 5;46(22):6536-46. doi: 10.1021/bi6026506. Epub 2007 May 12.

Abstract

The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140 degrees rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

摘要

包括酰基辅酶A合成酶、非核糖体肽合成酶(NRPS)的腺苷化结构域以及萤火虫荧光素酶在内的腺苷酸形成酶,通过乒乓机制进行两个半反应。我们提出了一种针对这些酶的结构域交替机制,即在初始腺苷化反应完成后,这些酶的C末端结构域会进行140度旋转,以进行第二个硫酯形成半反应。突变酶的结构和动力学数据支持这一假设。我们在此展示了对肠炎沙门氏菌乙酰辅酶A合成酶(Acs)的突变,并测试了这些酶催化完整反应和腺苷化半反应的能力。用丙氨酸取代赖氨酸609会产生一种无法催化腺苷酸反应的酶,而甘氨酸524到亮氨酸的取代无法催化完整反应,但能催化腺苷化半反应,其活性与野生型酶相当。这两个位于可移动C末端结构域上的残基位置,有力地支持了结构域交替假说。我们还展示了假定底物结合残基的稳态动力学数据,并证明没有单个残基在决定辅酶A结合方面起主导作用。我们还在活性位点创建了两个突变以改变酰基底物特异性。最后,展示了野生型Acs以及突变体R194A、R584A、R584E、K609A和V386A的晶体结构,以支持生化分析。

相似文献

1
Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase.
Biochemistry. 2007 Jun 5;46(22):6536-46. doi: 10.1021/bi6026506. Epub 2007 May 12.
2
Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
Biochemistry. 2006 Sep 26;45(38):11482-90. doi: 10.1021/bi061023e.
5
Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP.
Biochemistry. 2004 Feb 17;43(6):1425-31. doi: 10.1021/bi035911a.
7
Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis.
Biochemistry. 2008 Aug 5;47(31):8026-39. doi: 10.1021/bi800698m. Epub 2008 Jul 12.
8
Structural Characterization of the Reaction and Substrate Specificity Mechanisms of Pathogenic Fungal Acetyl-CoA Synthetases.
ACS Chem Biol. 2021 Aug 20;16(8):1587-1599. doi: 10.1021/acschembio.1c00484. Epub 2021 Aug 9.
9
Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine.
Science. 2002 Dec 20;298(5602):2390-2. doi: 10.1126/science.1077650.
10
Crystal structure of the thioesterification conformation of -succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode.
J Biol Chem. 2017 Jul 21;292(29):12296-12310. doi: 10.1074/jbc.M117.790410. Epub 2017 May 30.

引用本文的文献

2
Fatty acid metabolism and the oxidative stress response support bacterial predation.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2420875122. doi: 10.1073/pnas.2420875122. Epub 2025 Jan 27.
3
Enzymatic synthesis of azide by a promiscuous N-nitrosylase.
Nat Chem. 2024 Dec;16(12):2066-2075. doi: 10.1038/s41557-024-01646-2. Epub 2024 Sep 27.
4
Kinetic analysis of the three-substrate reaction mechanism of an NRPS-independent siderophore (NIS) synthetase.
Methods Enzymol. 2024;702:1-19. doi: 10.1016/bs.mie.2024.06.012. Epub 2024 Jul 3.
5
Lipoic acid attachment to proteins: stimulating new developments.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0000524. doi: 10.1128/mmbr.00005-24. Epub 2024 Apr 16.
7
Acetyl-CoA synthetase (ACSS2) does not generate butyryl- and crotonyl-CoA.
Mol Metab. 2024 Mar;81:101903. doi: 10.1016/j.molmet.2024.101903. Epub 2024 Feb 16.
8
Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases.
Nat Chem. 2024 Feb;16(2):259-268. doi: 10.1038/s41557-023-01361-4. Epub 2023 Dec 4.
9
High-Throughput Engineering of Nonribosomal Extension Modules.
ACS Chem Biol. 2023 Dec 15;18(12):2516-2523. doi: 10.1021/acschembio.3c00506. Epub 2023 Nov 20.
10
The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases.
Life (Basel). 2023 Jul 28;13(8):1643. doi: 10.3390/life13081643.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Aminoacyl-coenzyme A synthesis catalyzed by adenylation domains.
FEBS Lett. 2007 Mar 6;581(5):905-10. doi: 10.1016/j.febslet.2007.01.066. Epub 2007 Feb 7.
3
Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
Biochemistry. 2006 Sep 26;45(38):11482-90. doi: 10.1021/bi061023e.
4
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-10235. doi: 10.1073/pnas.0604392103. Epub 2006 Jun 21.
6
Structural basis for the spectral difference in luciferase bioluminescence.
Nature. 2006 Mar 16;440(7082):372-6. doi: 10.1038/nature04542.
9
Structural aspects of non-ribosomal peptide biosynthesis.
Curr Opin Struct Biol. 2004 Dec;14(6):748-56. doi: 10.1016/j.sbi.2004.10.005.
10
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验