Del Rio Flores Antonio, Zhai Rui, Kastner David W, Seshadri Kaushik, Yang Siyue, De Matias Kyle, Shen Yuanbo, Cai Wenlong, Narayanamoorthy Maanasa, Do Nicholas B, Xue Zhaoqiang, Marzooqi Dunya Al, Kulik Heather J, Zhang Wenjun
Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Chem. 2024 Dec;16(12):2066-2075. doi: 10.1038/s41557-024-01646-2. Epub 2024 Sep 27.
Azides are energy-rich compounds with diverse representation in a broad range of scientific disciplines, including material science, synthetic chemistry, pharmaceutical science and chemical biology. Despite ubiquitous usage of the azido group, the underlying biosynthetic pathways for its formation remain largely unknown. Here we report the characterization of an enzymatic route for de novo azide construction. We demonstrate that Tri17, a promiscuous ATP- and nitrite-dependent enzyme, catalyses organic azide synthesis through sequential N-nitrosation and dehydration of aryl hydrazines. Through biochemical, structural and computational analyses, we further propose a plausible molecular mechanism for azide synthesis that sets the stage for future biocatalytic applications and biosynthetic pathway engineering.
叠氮化物是富含能量的化合物,在广泛的科学学科中都有不同的表现,包括材料科学、合成化学、药物科学和化学生物学。尽管叠氮基团被广泛使用,但其形成的潜在生物合成途径在很大程度上仍然未知。在这里,我们报告了一条从头合成叠氮化物的酶促途径的特征。我们证明,Tri17是一种混杂的依赖ATP和亚硝酸盐的酶,它通过芳基肼的连续N-亚硝化和脱水反应催化有机叠氮化物的合成。通过生化、结构和计算分析,我们进一步提出了一种合理的叠氮化物合成分子机制,为未来的生物催化应用和生物合成途径工程奠定了基础。