Suppr超能文献

一种混杂的N-亚硝基化酶催化合成叠氮化物

Enzymatic synthesis of azide by a promiscuous N-nitrosylase.

作者信息

Del Rio Flores Antonio, Zhai Rui, Kastner David W, Seshadri Kaushik, Yang Siyue, De Matias Kyle, Shen Yuanbo, Cai Wenlong, Narayanamoorthy Maanasa, Do Nicholas B, Xue Zhaoqiang, Marzooqi Dunya Al, Kulik Heather J, Zhang Wenjun

机构信息

Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.

Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Chem. 2024 Dec;16(12):2066-2075. doi: 10.1038/s41557-024-01646-2. Epub 2024 Sep 27.

Abstract

Azides are energy-rich compounds with diverse representation in a broad range of scientific disciplines, including material science, synthetic chemistry, pharmaceutical science and chemical biology. Despite ubiquitous usage of the azido group, the underlying biosynthetic pathways for its formation remain largely unknown. Here we report the characterization of an enzymatic route for de novo azide construction. We demonstrate that Tri17, a promiscuous ATP- and nitrite-dependent enzyme, catalyses organic azide synthesis through sequential N-nitrosation and dehydration of aryl hydrazines. Through biochemical, structural and computational analyses, we further propose a plausible molecular mechanism for azide synthesis that sets the stage for future biocatalytic applications and biosynthetic pathway engineering.

摘要

叠氮化物是富含能量的化合物,在广泛的科学学科中都有不同的表现,包括材料科学、合成化学、药物科学和化学生物学。尽管叠氮基团被广泛使用,但其形成的潜在生物合成途径在很大程度上仍然未知。在这里,我们报告了一条从头合成叠氮化物的酶促途径的特征。我们证明,Tri17是一种混杂的依赖ATP和亚硝酸盐的酶,它通过芳基肼的连续N-亚硝化和脱水反应催化有机叠氮化物的合成。通过生化、结构和计算分析,我们进一步提出了一种合理的叠氮化物合成分子机制,为未来的生物催化应用和生物合成途径工程奠定了基础。

相似文献

1
Enzymatic synthesis of azide by a promiscuous N-nitrosylase.一种混杂的N-亚硝基化酶催化合成叠氮化物
Nat Chem. 2024 Dec;16(12):2066-2075. doi: 10.1038/s41557-024-01646-2. Epub 2024 Sep 27.
3
Electrophilic Azides for Materials Synthesis and Chemical Biology.亲电叠氮化物在材料合成和化学生物学中的应用。
Acc Chem Res. 2020 Apr 21;53(4):937-948. doi: 10.1021/acs.accounts.0c00046. Epub 2020 Mar 24.
8
Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore.三嗪霉素生物合成特征为 N-羟三嗪药效团。
Nat Chem Biol. 2021 Dec;17(12):1305-1313. doi: 10.1038/s41589-021-00895-3. Epub 2021 Nov 1.

引用本文的文献

3
Structural Basis for the Catalytic Mechanism of ATP-Dependent Diazotase CmaA6.ATP 依赖性重氮酶 CmaA6 催化机制的结构基础
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202505851. doi: 10.1002/anie.202505851. Epub 2025 May 5.
4
Exquisite Complex Reaction Cascade in the Natural 1,2,4-Triazine Assembly.天然1,2,4-三嗪组装中的精妙复合反应级联
J Am Chem Soc. 2025 Apr 9;147(14):12075-12081. doi: 10.1021/jacs.4c18761. Epub 2025 Mar 29.
5
Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds.氮-氮键酶促形成的最新进展与挑战
ACS Catal. 2024 Dec 17;15(1):310-342. doi: 10.1021/acscatal.4c05268. eCollection 2025 Jan 3.
6
Catalysis-enabled amine sorting.催化介导的胺类分选
Nat Chem. 2024 Dec;16(12):1936-1937. doi: 10.1038/s41557-024-01676-w.

本文引用的文献

8
Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition.环动态在 II 型 NRPS 生物分子识别中的重要作用。
ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验