Suppr超能文献

Sedimentation field flow fractionation to study human erythroleukemia cell megakaryocytic differentiation after short period diosgenin induction.

作者信息

Léger D Y, Battu S, Liagre B, Cardot P J P, Beneytout J L

机构信息

Laboratoire de Biochimie, EA 4021 Biomolécules et Thérapies Anti-tumorales, Université de Limoges, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges Cedex, France.

出版信息

J Chromatogr A. 2007 Jul 20;1157(1-2):309-20. doi: 10.1016/j.chroma.2007.04.051. Epub 2007 May 4.

Abstract

Anti-cancer differentiation therapy could be one strategy to stop cancer cell proliferation. We propose a new sedimentation field flow fractionation (SdFFF) cell separation application in the field of cancer research. It concerns the study of megakaryocytic differentiation processes after a short exposure to an inducting agent (diosgenin). Washout process and early dual SdFFF separation--removing the influence of diosgenin and decreasing the influence of undifferentiated cells--resulted in the preparation of an enriched population to study the mechanism and kinetics of megakaryocytic differentiation. A short exposure to diosgenin was able to induce complete differentiation leading to maximal maturation which ended naturally after 192h incubation without the influence of a secondary effect of diosgenin. The study of isolated undifferentiated cells also showed that no resistance to diosgenin was observed. This result suggested different sensitivities to differentiation induction, and SdFFF cell separation would be of great interest to explore this phenomena.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验