Suppr超能文献

猕猴初级视皮层的高分辨率功能磁共振成像

High-resolution fMRI of macaque V1.

作者信息

Goense Jozien B M, Zappe Anne-Catherin, Logothetis Nikos K

机构信息

Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.

出版信息

Magn Reson Imaging. 2007 Jul;25(6):740-7. doi: 10.1016/j.mri.2007.02.013. Epub 2007 May 11.

Abstract

To understand the physiological mechanisms underlying the blood-oxygenation-level-dependent (BOLD) signal, the acquisition of data must be optimized to achieve the maximum possible spatial resolution and specificity. The term "specificity" implies the selective enhancement of signals originating in the parenchyma, and thus best reflecting actual neural activity. Such spatial specificity is a prerequisite for imaging aimed at the elucidation of interactions between cortical micromodules, such as columns and laminae. In addition to the optimal selection of functional magnetic resonance imaging pulse sequences, accurate superposition of activation patterns onto corresponding anatomical scans, preferably acquired during the same experimental session, is necessary. At high resolution, exact functional-to-structural registration is of critical importance, because even small differences in geometry, that arise when different sequences are used for functional and anatomical scans, can lead to misallocation of activation and erroneous interpretation of data. In the present study, we used spin-echo (SE) echo planar imaging (EPI) for functional scans, since the SE-BOLD signal is sensitive to the capillary response, together with SE-EPI anatomical reference scans. The combination of these acquisition methods revealed a clear spatial colocalization of the largest fractional changes with the Gennari line, suggesting peak activity in Layer IV. Notably, this very same layer coincided with the largest relaxivity changes as observed in steady-state cerebral blood volume measurements, using the intravascular agent monocrystalline iron oxide nanoparticles (MION).

摘要

为了理解血氧水平依赖(BOLD)信号背后的生理机制,必须优化数据采集,以实现尽可能高的空间分辨率和特异性。术语“特异性”意味着对源自实质的信号进行选择性增强,从而最好地反映实际神经活动。这种空间特异性是旨在阐明皮质微模块(如柱和层)之间相互作用的成像的先决条件。除了最佳选择功能磁共振成像脉冲序列外,还需要将激活模式准确叠加到相应的解剖扫描上,最好是在同一实验过程中采集的扫描。在高分辨率下,精确的功能与结构配准至关重要,因为当功能和解剖扫描使用不同序列时出现的几何形状的微小差异,都可能导致激活的错误定位和数据的错误解释。在本研究中,我们使用自旋回波(SE)回波平面成像(EPI)进行功能扫描,因为SE-BOLD信号对毛细血管反应敏感,同时使用SE-EPI解剖参考扫描。这些采集方法的结合显示,最大分数变化与Gennari线在空间上明显共定位,表明IV层有峰值活动。值得注意的是,使用血管内剂单晶氧化铁纳米颗粒(MION)进行稳态脑血容量测量时,这同一层与最大弛豫率变化一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验