Suppr超能文献

一种基于高度相关检验统计量的多重比较保守检验方法。

A conservative test for multiple comparison based on highly correlated test statistics.

作者信息

Ninomiya Yoshiyuki, Fujisawa Hironori

机构信息

Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

出版信息

Biometrics. 2007 Dec;63(4):1135-42. doi: 10.1111/j.1541-0420.2007.00821.x. Epub 2007 May 14.

Abstract

In genetics, we often encounter a large number of highly correlated test statistics. The most famous conservative bound for multiple comparison is Bonferroni's bound, which is suitable when the test statistics are independent but not when the test statistics are highly correlated. This article proposes a new conservative bound that is easily calculated without multiple integration and is a good approximation when the test statistics are highly correlated. The performance of the proposed method is evaluated by simulation and real data analysis.

摘要

在遗传学中,我们经常会遇到大量高度相关的检验统计量。多重比较中最著名的保守界限是邦费罗尼界限,它适用于检验统计量相互独立的情况,但不适用于检验统计量高度相关的情况。本文提出了一种新的保守界限,该界限无需多重积分即可轻松计算,并且在检验统计量高度相关时是一个很好的近似值。通过模拟和实际数据分析对所提出方法的性能进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验