Freed M I, Rastegar A, Bia M J
Yale University School of Medicine, New Haven, Connecticut.
Yale J Biol Med. 1991 Mar-Apr;64(2):177-86.
The known effects of calcium channel blockers on various aspects of potassium homeostasis are reviewed. Regulation of potassium homeostasis requires both renal and external handling mechanisms. Signaling by calcium appears to mediate both of these. Calcium channels have been identified in adrenal glomerulosa cells, and cellular calcium entry has been demonstrated in vitro to be necessary for the synthesis and secretion of aldosterone. Calcium channel antagonists such as verapamil and nifedipine, at pharmacologic doses, can block aldosterone production. In vivo, however, only chronic administration of verapamil appears to attenuate aldosterone responsiveness to angiotensin II. Chronic administration of nifedipine does not have a dramatic effect on aldosterone production following potassium loading. Other studies have demonstrated improved extrarenal potassium disposal following treatment with calcium channel blocking agents. Clinically, there are no reports of either hyperkalemia or hypokalemia with the routine therapeutic use of these agents given alone. This review was prompted by the development of hyperkalemia in a patient with chronic renal failure following the initiation of therapy with the calcium channel blocker diltiazem: however, numerous other etiologies may also have contributed to the development of hyperkalemia in this case. Review of the data indicates that current evidence implicating this class of drugs in the pathogenesis of disordered potassium regulation remains equivocal.