Suppr超能文献

一种用于药物重新定位的大规模计算方法。

A large-scale computational approach to drug repositioning.

作者信息

Li Yvonne Y, An Jianghong, Jones Steven J M

机构信息

Canada's Michael Smith Genome Sciences Centre, 570 West 7th Avenue, Vancouver, British Columbia, V5Z 4S6, Canada.

出版信息

Genome Inform. 2006;17(2):239-47.

Abstract

We have developed a computational pipeline for the prediction of protein-small molecule interactions and have applied it to the drug repositioning problem through a large-scale analysis of known drug targets and small molecule drugs. Our pipeline combines forward and inverse docking, the latter of which is a twist on the conventional docking procedure used in drug discovery: instead of docking many compounds against a specific target to look for potential inhibitors, one compound is docked against many proteins to search for potential targets. We collected an extensive set of 1,055 approved small molecule drugs and 1,548 drug target binding pockets (representing 78 unique human protein therapeutic targets) and performed a large-scale docking using ICM software to both validate our method and predict novel protein-drug interactions. For the 37 known protein-drug interactions in our data set that have a known structure complex, all docked conformations were within 2.0A of the solved conformation, and 30 of these had a docking score passing the typical ICM score threshold. Out of the 237 known protein-drug interactions annotated by DrugBank, 74 passed the score threshold, and 52 showed the drug docking to another protein with a better docking score than to its known target. These protein targets are implicated in human diseases, so novel protein-drug interactions discovered represent potential novel indications for the drugs. Our results highlight the promising nature of the inverse docking method for identifying potential novel therapeutic uses for existing drugs.

摘要

我们开发了一种用于预测蛋白质 - 小分子相互作用的计算流程,并通过对已知药物靶点和小分子药物的大规模分析将其应用于药物重新定位问题。我们的流程结合了正向对接和反向对接,其中后者是对药物发现中使用的传统对接程序的一种改进:不是将许多化合物与特定靶点对接以寻找潜在抑制剂,而是将一种化合物与许多蛋白质对接以寻找潜在靶点。我们收集了一组广泛的1055种已批准的小分子药物和1548个药物靶点结合口袋(代表78个独特的人类蛋白质治疗靶点),并使用ICM软件进行大规模对接,以验证我们的方法并预测新的蛋白质 - 药物相互作用。对于我们数据集中37种已知具有已知结构复合物的蛋白质 - 药物相互作用,所有对接构象与解析构象的距离均在2.0埃以内,其中30种的对接分数超过了典型的ICM分数阈值。在DrugBank注释的237种已知蛋白质 - 药物相互作用中,74种通过了分数阈值,52种显示药物与另一种蛋白质对接时的对接分数比与其已知靶点对接时更好。这些蛋白质靶点与人类疾病有关,因此发现的新的蛋白质 - 药物相互作用代表了这些药物潜在的新适应症。我们的结果突出了反向对接方法在识别现有药物潜在新治疗用途方面的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验