Suppr超能文献

FDA 批准与靶点结合的药物:评估对接方案的构象预测准确性。

FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols.

机构信息

Molecular Modeling Group, Indian Institute of Chemical Technology, Hyderabad,, 500 607, Andhra Pradesh, India.

出版信息

J Mol Model. 2012 Sep;18(9):4263-74. doi: 10.1007/s00894-012-1416-1. Epub 2012 May 8.

Abstract

Efficient drug discovery programs can be designed by utilizing existing pools of knowledge from the already approved drugs. This can be achieved in one way by repositioning of drugs approved for some indications to newer indications. Complex of drug to its target gives fundamental insight into molecular recognition and a clear understanding of putative binding site. Five popular docking protocols, Glide, Gold, FlexX, Cdocker and LigandFit have been evaluated on a dataset of 199 FDA approved drug-target complexes for their accuracy in predicting the experimental pose. Performance for all the protocols is assessed at default settings, with root mean square deviation (RMSD) between the experimental ligand pose and the docked pose of less than 2.0 Å as the success criteria in predicting the pose. Glide (38.7 %) is found to be the most accurate in top ranked pose and Cdocker (58.8 %) in top RMSD pose. Ligand flexibility is a major bottleneck in failure of docking protocols to correctly predict the pose. Resolution of the crystal structure shows an inverse relationship with the performance of docking protocol. All the protocols perform optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant hydrophilic interaction exists. Overall in 16 different target classes, hydrophobic interactions dominate in the binding site and maximum success is achieved for all the docking protocols in nuclear hormone receptor class while performance for the rest of the classes varied based on individual protocol.

摘要

高效的药物发现计划可以通过利用已批准药物的现有知识库来设计。一种方法是将已批准用于某些适应症的药物重新定位到新的适应症。药物与其靶标的复合物为分子识别提供了基本的见解,并清楚地了解了假定的结合位点。评估了五种流行的对接协议,即 Glide、Gold、FlexX、Cdocker 和 LigandFit,以评估它们在预测实验构象方面的准确性,数据集由 199 个 FDA 批准的药物-靶标复合物组成。所有协议都在默认设置下进行性能评估,以实验配体构象和对接构象之间的均方根偏差(RMSD)小于 2.0 Å 作为预测构象的成功标准。发现 Glide(38.7%)在排名最高的构象中最准确,Cdocker(58.8%)在 RMSD 排名最高的构象中最准确。配体的灵活性是对接协议无法正确预测构象的主要瓶颈。晶体结构的分辨率与对接协议的性能呈反比关系。当存在平衡型亲水和疏水相互作用或主导亲水相互作用时,所有协议都能达到最佳性能。在 16 个不同的靶标类别中,疏水相互作用在结合位点中占主导地位,所有对接协议在核激素受体类别中都取得了最大的成功,而其余类别的性能则因个别协议而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验