文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于微流控分离和检测的双磁敏/温敏纳米颗粒。

Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays.

作者信息

Lai James J, Hoffman John M, Ebara Mitsuhiro, Hoffman Allan S, Estournès Claude, Wattiaux Alain, Stayton Patrick S

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Langmuir. 2007 Jun 19;23(13):7385-91. doi: 10.1021/la062527g. Epub 2007 May 16.


DOI:10.1021/la062527g
PMID:17503854
Abstract

A stimuli-responsive magnetic nanoparticle system for diagnostic target capture and concentration has been developed for microfluidic lab card settings. Telechelic poly(N-isopropylacrylamide) (PNIPAAm) polymer chains were synthesized with dodecyl tails at one end and a reactive carboxylate at the opposite end by the reversible addition fragmentation transfer technique. These PNIPAAm chains self-associate into nanoscale micelles that were used as dimensional confinements to synthesize the magnetic nanoparticles. The resulting superparamagnetic nanoparticles exhibit a gamma-Fe2O3 core ( approximately 5 nm) with a layer of carboxylate-terminated PNIPAAm chains as a corona on the surface. The carboxylate group was used to functionalize the magnetic nanoparticles with biotin and subsequently with streptavidin. The functionalized magnetic nanoparticles can be reversibly aggregated in solution as the temperature is cycled through the PNIPAAm lower critical solution temperature (LCST). While the magnetophoretic mobility of the individual nanoparticles below the LCST is negligible, the aggregates formed above the LCST are large enough to respond to an applied magnetic field. The magnetic nanoparticles can associate with biotinylated targets as individual particles, and then subsequent application of a combined temperature increase and magnetic field can be used to magnetically separate the aggregated particles onto the poly(ethylene glycol)-modified polydimethylsiloxane channel walls of a microfluidic device. When the magnetic field is turned off and the temperature is reversed, the captured aggregates redisperse into the channel flow stream for further downstream processing. The dual magnetic- and temperature-responsive nanoparticles can thus be used as soluble reagents to capture diagnostic targets at a controlled time point and channel position. They can then be isolated and released after the nanoparticles have captured target molecules, overcoming the problem of low magnetophoretic mobility of the individual particle while retaining the advantages of a high surface to volume ratio and faster diffusive properties during target capture.

摘要

一种用于诊断目标捕获和浓缩的刺激响应性磁性纳米粒子系统已被开发用于微流控实验室卡片设置。通过可逆加成-断裂链转移技术合成了具有十二烷基尾端和反应性羧酸盐另一端的遥爪聚(N-异丙基丙烯酰胺)(PNIPAAm)聚合物链。这些PNIPAAm链自组装成纳米级胶束,用作尺寸限制来合成磁性纳米粒子。所得的超顺磁性纳米粒子呈现出γ-Fe2O3核心(约5纳米),表面有一层羧酸盐封端的PNIPAAm链作为冠层。羧酸盐基团用于用生物素对磁性纳米粒子进行功能化,随后用链霉亲和素进行功能化。当温度循环通过PNIPAAm的低临界溶液温度(LCST)时,功能化的磁性纳米粒子可在溶液中可逆聚集。虽然低于LCST时单个纳米粒子的磁泳迁移率可忽略不计,但高于LCST时形成的聚集体足够大以响应施加的磁场。磁性纳米粒子可以作为单个粒子与生物素化的目标结合,然后随后施加温度升高和磁场的组合可用于将聚集的粒子磁性分离到微流控装置的聚(乙二醇)修饰的聚二甲基硅氧烷通道壁上。当磁场关闭且温度反转时,捕获的聚集体重新分散到通道流中以进行进一步的下游处理。因此,双磁响应和温度响应的纳米粒子可以用作可溶性试剂,在受控的时间点和通道位置捕获诊断目标。然后在纳米粒子捕获目标分子后将它们分离并释放,克服了单个粒子磁泳迁移率低的问题,同时保留了高表面积与体积比以及在目标捕获期间更快扩散特性的优点。

相似文献

[1]
Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays.

Langmuir. 2007-6-19

[2]
Mixed stimuli-responsive magnetic and gold nanoparticle system for rapid purification, enrichment, and detection of biomarkers.

Bioconjug Chem. 2010-11-11

[3]
Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin.

Langmuir. 2007-5-22

[4]
A helical flow, circular microreactor for separating and enriching "smart" polymer-antibody capture reagents.

Lab Chip. 2010-9-30

[5]
A smart microfluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads.

Anal Chem. 2003-7-1

[6]
Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique.

Biomacromolecules. 2006-10

[7]
Reversible meso-scale smart polymer--protein particles of controlled sizes.

Bioconjug Chem. 2004

[8]
Double thermoresponsive block copolymers featuring a biotin end group.

Biomacromolecules. 2010-9-13

[9]
Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.

J Biomed Mater Res A. 2007-1

[10]
A thermo-sensitive NIPA-based co-polymer and monosize polycationic nanoparticle for non-viral gene transfer to smooth muscle cells.

J Biomater Sci Polym Ed. 2011-2-10

引用本文的文献

[1]
Exosome Processing and Characterization Approaches for Research and Technology Development.

Adv Sci (Weinh). 2022-5

[2]
In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid.

Polymers (Basel). 2021-11-23

[3]
Constrained thermoresponsive polymers - new insights into fundamentals and applications.

Beilstein J Org Chem. 2021-8-20

[4]
Temperature responsive smart polymer for enabling affinity enrichment of current coronavirus (SARS-CoV-2) to improve its diagnostic sensitivity.

Comput Struct Biotechnol J. 2021

[5]
Smart Nanomaterials for Biomedical Applications-A Review.

Nanomaterials (Basel). 2021-2-4

[6]
Dynamic thermal trapping enables cross-species smart nanoparticle swarms.

Sci Adv. 2021-1-6

[7]
A smart polymer for sequence-selective binding, pulldown, and release of DNA targets.

Commun Biol. 2020-7-10

[8]
Characteristic differences of cell sheets composed of mesenchymal stem cells with different tissue origins.

Regen Ther. 2019-5-10

[9]
On the Mechanism of Drug Release from Polysaccharide Hydrogels Cross-Linked with Magnetite Nanoparticles by Applying Alternating Magnetic Fields: the Case of DOXO Delivery.

Gels. 2015-5-20

[10]
Effect of Polymer Phase Transition Behavior on Temperature-Responsive Polymer-Modified Liposomes for siRNA Transfection.

Int J Mol Sci. 2019-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索