Suppr超能文献

Intraruminal rehydration of ovine fetuses.

作者信息

Ross M G, Sherman D J, Ervin M G, Day L

机构信息

Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance 90502.

出版信息

Am J Physiol. 1991 Dec;261(6 Pt 2):R1381-7. doi: 10.1152/ajpregu.1991.261.6.R1381.

Abstract

During oral rehydration of adult mammals, oropharyngeal stimulation, the act of swallowing, and/or gastric factors contribute to a rapid decrease in plasma arginine vasopressin (AVP) that precedes plasma osmolality changes. To determine whether similar mechanisms are present in the developing fetus, six chronically prepared ovine fetuses were rehydrated with intraruminal (IR) distilled water infusions (1 ml.kg-1.min-1 for 60 min) after 43 +/- 3 h of maternal water deprivation. In response to maternal dehydration, significant increases were noted in maternal and fetal mean plasma osmolalities, sodium and AVP concentrations, and fetal urine osmolality. As estimated by hematocrit, fetal intravascular volume decreased by 11%. Fetal rehydration via IR distilled water infusion evoked a significant decrease in fetal plasma osmolality but no change in urine osmolality. Unexpectedly, fetal arterial blood pressure increased and arterial PO2 decreased while fetal hematocrit indicated a further 7% decrease in intravascular volume after the IR infusion. There was a nonsignificant trend toward increased fetal glomerular filtration rate, urine volume, and plasma AVP concentrations. Identical IR water infusions to five euhydrated fetuses resulted in significant decreases in fetal plasma osmolality and increases in glomerular filtration rate, urine flow, and osmolar excretion. The euhydrated fetuses also exhibited significant increases in mean arterial blood pressure and hematocrit and decreased fetal arterial PO2. These results indicate that IR water does not suppress AVP secretion in the dehydrated ovine fetus. Rather, both euhydrated and dehydrated fetuses exhibit an idiosyncratic vasoconstrictive response to IR water.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验