Suppr超能文献

叶绿体中的叶绿素、配体与捕光复合体的组装

Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts.

作者信息

Hoober J Kenneth, Eggink Laura L, Chen Min

机构信息

School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.

出版信息

Photosynth Res. 2007 Nov-Dec;94(2-3):387-400. doi: 10.1007/s11120-007-9181-1. Epub 2007 May 16.

Abstract

Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs.

摘要

叶绿素(Chl)b在植物中光捕获复合体(LHCs)的积累过程中发挥着重要作用。在本文中,通过考虑叶绿素的性质以及它们在复合体中与之相互作用的配体,来探究叶绿素b的这一作用。叶绿素的整体性质,不仅包括其光谱特征,也会因分子外围的化学修饰而改变。重要的修饰包括在特定位置引入氧原子以及侧链的还原或去饱和。这些修饰会影响配位键的形成,通过配位键,叶绿素分子的中心镁原子(路易斯酸)与蛋白质中的氨基酸侧链(作为路易斯碱)相互作用。叶绿素a是一种多功能的路易斯酸,主要与咪唑基团相互作用,但也与侧链酰胺和水相互作用。叶绿素b上的7-甲酰基将电子密度吸引到分子外围,因此与叶绿素a相比,正电荷的镁原子受到分子电子云的屏蔽作用较小。因此,叶绿素b倾向于与具有固定偶极的路易斯碱形成静电键,如水,特别是肽主链羰基。蛋白质与7-甲酰基之间的氢键增强了配位键。这些与叶绿素b额外的强相互作用对于实现稳定的光捕获复合体的组装是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a850/2117338/ff67248c17b1/11120_2007_9181_Fig1_HTML.jpg

相似文献

1
Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts.
Photosynth Res. 2007 Nov-Dec;94(2-3):387-400. doi: 10.1007/s11120-007-9181-1. Epub 2007 May 16.
2
A potential role of chlorophylls b and c in assembly of light-harvesting complexes.
FEBS Lett. 2001 Jan 26;489(1):1-3. doi: 10.1016/s0014-5793(00)02410-8.
3
The role of chlorophyll b in photosynthesis: hypothesis.
BMC Plant Biol. 2001;1:2. doi: 10.1186/1471-2229-1-2. Epub 2001 Oct 17.
4
Influence of structure on binding of chlorophylls to peptide ligands.
J Am Chem Soc. 2005 Feb 23;127(7):2052-3. doi: 10.1021/ja043462b.
5
The oligomeric states of the photosystems and the light-harvesting complexes in the Chl b-less mutant.
Plant Cell Physiol. 2011 Dec;52(12):2103-14. doi: 10.1093/pcp/pcr138. Epub 2011 Oct 17.
6
Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls.
Biochemistry. 2017 Mar 28;56(12):1726-1736. doi: 10.1021/acs.biochem.7b00075. Epub 2017 Mar 14.
8
Structural-functional organization of the main light harvesting complex and photosystem 2 of higher plants.
Biochemistry (Mosc). 2003 Jun;68(6):662-77. doi: 10.1023/a:1024622027378.
9
10
Light absorption by the chlorophyll a-b complexes of photosystem II in a leaf with special reference to LHCII.
Photochem Photobiol. 2004 Nov-Dec;80(3):492-8. doi: 10.1562/0031-8655(2004)080<0492:LABTCA>2.0.CO;2.

引用本文的文献

3
Biomimetic Materials Based on Poly-3-hydroxybutyrate and Chlorophyll Derivatives.
Polymers (Basel). 2023 Dec 28;16(1):101. doi: 10.3390/polym16010101.
4
Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings.
Plant Signal Behav. 2023 Dec 31;18(1):2285169. doi: 10.1080/15592324.2023.2285169. Epub 2023 Nov 28.
5
Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase.
Photosynth Res. 2023 Dec;158(3):171-180. doi: 10.1007/s11120-023-01044-8. Epub 2023 Aug 31.
6
Leaf metabolic traits reveal hidden dimensions of plant form and function.
Sci Adv. 2023 Sep;9(35):eadi4029. doi: 10.1126/sciadv.adi4029. Epub 2023 Aug 30.
8
Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light.
BBA Adv. 2021 Jun 26;1:100019. doi: 10.1016/j.bbadva.2021.100019. eCollection 2021.
9
The origin of pigment-binding differences in CP29 and LHCII: the role of protein structure and dynamics.
Photochem Photobiol Sci. 2023 Jun;22(6):1279-1297. doi: 10.1007/s43630-023-00368-7. Epub 2023 Feb 6.

本文引用的文献

4
The rotational spectra, electric dipole moments and molecular structures of anisole and benzaldehyde.
Phys Chem Chem Phys. 2005 Apr 21;7(8):1708-15. doi: 10.1039/b501041a.
5
Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand.
Biochim Biophys Acta. 2007 Jun;1767(6):603-9. doi: 10.1016/j.bbabio.2007.01.006. Epub 2007 Jan 17.
6
Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb).
J Mol Biol. 2007 Feb 23;366(3):1045-54. doi: 10.1016/j.jmb.2006.11.069. Epub 2006 Dec 2.
7
Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein.
J Biol Chem. 2007 Mar 2;282(9):6525-31. doi: 10.1074/jbc.M609458200. Epub 2006 Dec 14.
8
Unassisted translocation of large polypeptide domains across phospholipid bilayers.
J Cell Biol. 2006 Dec 4;175(5):767-77. doi: 10.1083/jcb.200608101. Epub 2006 Nov 27.
10
Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations.
Biochim Biophys Acta. 2006 Aug;1757(8):942-68. doi: 10.1016/j.bbabio.2006.06.005. Epub 2006 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验