Suppr超能文献

关于两栖类胚胎游泳中枢模式发生器的实验。

Experiments on the central pattern generator for swimming in amphibian embryos.

作者信息

Kahn J A, Roberts A

机构信息

Department of Zoology, The University, Bristol, U.S.

出版信息

Philos Trans R Soc Lond B Biol Sci. 1982 Jan 27;296(1081):229-43. doi: 10.1098/rstb.1982.0004.

Abstract

The central nervous system of paralysed Xenopus laevis embryos can generate a motor output pattern suitable for swimming locomotion. By recording motor root activity in paralysed embryos with transected nervous systems we have shown that: (a) the spinal cord is capable of swimming pattern generation; (b) swimming pattern generator capability in the hindbrain and spinal cord is distributed; (c) caudal hindbrain is necessary for sustained swimming output after discrete stimulation. By recording similarly from embryos whose central nervous system was divided longitudinally into left and right sides, we have shown that: (a) each side can generate rhythmic motor output with cycle periods like those in swimming; (b) during this activity cycle period increases within an episode, and there is the usual rostrocaudal delay found in swimming; (c) this activity is influenced by sensory stimuli in the same way as swimming activity; (d) normal phase coupling of the left and right sides can be established by the ventral commissure in the spinal cord. We conclude that interactions between the antagonistic (left and right) motor systems are not necessary for swimming rhythm generation and present a model for swimming pattern generation where autonomous rhythm generators on each side of the nervous system drive the motoneurons. Alternation is achieved by reciprocal inhibition, and activity is initiated and maintained by tonic excitation from the hindbrain.

摘要

瘫痪的非洲爪蟾胚胎的中枢神经系统能够产生适合游泳运动的运动输出模式。通过记录神经系统横断的瘫痪胚胎的运动神经根活动,我们发现:(a)脊髓能够产生游泳模式;(b)后脑和脊髓中的游泳模式生成能力是分布式的;(c)离散刺激后,尾侧后脑对于持续的游泳输出是必需的。通过对中枢神经系统纵向分为左右两侧的胚胎进行类似记录,我们发现:(a)每一侧都能产生具有类似于游泳周期的节律性运动输出;(b)在这个活动周期内,周期在一个发作期内增加,并且存在游泳中常见的头尾延迟;(c)这种活动受感觉刺激的影响方式与游泳活动相同;(d)脊髓腹侧连合可建立左右两侧的正常相位耦合。我们得出结论,拮抗(左右)运动系统之间的相互作用对于游泳节律的产生不是必需的,并提出了一个游泳模式生成模型,其中神经系统每一侧的自主节律发生器驱动运动神经元。交替通过相互抑制实现,活动由后脑的紧张性兴奋启动和维持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验