Ferrario Andrea, Merrison-Hort Robert, Soffe Stephen R, Li Wen-Chang, Borisyuk Roman
School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK.
School of Biological Sciences, University of Bristol, Bristol, UK.
J Math Neurosci. 2018 Jul 18;8(1):10. doi: 10.1186/s13408-018-0065-9.
We present the study of a minimal microcircuit controlling locomotion in two-day-old Xenopus tadpoles. During swimming, neurons in the spinal central pattern generator (CPG) generate anti-phase oscillations between left and right half-centres. Experimental recordings show that the same CPG neurons can also generate transient bouts of long-lasting in-phase oscillations between left-right centres. These synchronous episodes are rarely recorded and have no identified behavioural purpose. However, metamorphosing tadpoles require both anti-phase and in-phase oscillations for swimming locomotion. Previous models have shown the ability to generate biologically realistic patterns of synchrony and swimming oscillations in tadpoles, but a mathematical description of how these oscillations appear is still missing. We define a simplified model that incorporates the key operating principles of tadpole locomotion. The model generates the various outputs seen in experimental recordings, including swimming and synchrony. To study the model, we perform detailed one- and two-parameter bifurcation analysis. This reveals the critical boundaries that separate different dynamical regimes and demonstrates the existence of parameter regions of bi-stable swimming and synchrony. We show that swimming is stable in a significantly larger range of parameters, and can be initiated more robustly, than synchrony. Our results can explain the appearance of long-lasting synchrony bouts seen in experiments at the start of a swimming episode.
我们展示了对控制两天大非洲爪蟾蝌蚪运动的最小微电路的研究。在游泳过程中,脊髓中央模式发生器(CPG)中的神经元在左右半中枢之间产生反相振荡。实验记录表明,相同的CPG神经元也可以在左右中枢之间产生短暂的长时间同相振荡。这些同步事件很少被记录到,并且没有明确的行为目的。然而,正在变态的蝌蚪在游泳运动中既需要反相振荡也需要同相振荡。先前的模型已经展示了在蝌蚪中产生生物学上逼真的同步模式和游泳振荡的能力,但仍缺少对这些振荡如何出现的数学描述。我们定义了一个简化模型,该模型纳入了蝌蚪运动的关键操作原理。该模型产生了实验记录中看到的各种输出,包括游泳和同步。为了研究该模型,我们进行了详细的单参数和双参数分岔分析。这揭示了区分不同动态状态的临界边界,并证明了双稳态游泳和同步的参数区域的存在。我们表明,与同步相比,游泳在显著更大的参数范围内是稳定的,并且可以更稳健地启动。我们的结果可以解释在游泳事件开始时实验中看到的长时间同步发作的出现。